Generalized Gaussian bridges
| annif.suggestions | stochastic processes|Gaussian processes|mathematics|insider trading|bridges|probability calculation|modelling (creation related to information)|processes|stability (physics)|strength theory|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p11400|http://www.yso.fi/onto/yso/p38750|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p13279|http://www.yso.fi/onto/yso/p14830|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p2111|http://www.yso.fi/onto/yso/p3585|http://www.yso.fi/onto/yso/p9146 | en |
| dc.contributor.author | Sottinen, Tommi | |
| dc.contributor.author | Yazigi, Adil | |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-9983-9708 | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-2433-2486 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2021-04-15T07:55:57Z | |
| dc.date.accessioned | 2025-06-25T12:57:49Z | |
| dc.date.available | 2021-04-15T07:55:57Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | A generalized bridge is a stochastic process that is conditioned on N linear functionals of its path. We consider two types of representations: orthogonal and canonical. The orthogonal representation is constructed from the entire path of the process. Thus, the future knowledge of the path is needed. In the canonical representation the filtrations of the bridge and the underlying process coincide. The canonical representation is provided for prediction-invertible Gaussian processes. All martingales are trivially prediction-invertible. A typical non-semimartingale example of a prediction-invertible Gaussian process is the fractional Brownian motion. We apply the canonical bridges to insider trading. | - |
| dc.description.notification | © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/). | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 22 | - |
| dc.format.pagerange | 3084-3105 | - |
| dc.identifier.olddbid | 14015 | |
| dc.identifier.oldhandle | 10024/12407 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1235 | |
| dc.identifier.urn | URN:NBN:fi-fe2021041510539 | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier | - |
| dc.publisher | North-Holland Publ. Co. | - |
| dc.publisher | Bernoulli Society for Mathematical Statistics and Probability | - |
| dc.relation.doi | 10.1016/j.spa.2014.04.002 | - |
| dc.relation.ispartofjournal | Stochastic processes and their applications | - |
| dc.relation.issn | 1879-209X | - |
| dc.relation.issn | 0304-4149 | - |
| dc.relation.issue | 9 | - |
| dc.relation.url | https://doi.org/10.1016/j.spa.2014.04.002 | - |
| dc.relation.volume | 124 | - |
| dc.rights | CC BY-NC-SA 4.0 | - |
| dc.source.identifier | Scopus: 84901449873 | - |
| dc.source.identifier | WOS: 000338399600010 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/12407 | |
| dc.subject | Canonical representation | - |
| dc.subject | Enlargement of filtration | - |
| dc.subject | Fractional Brownian motion | - |
| dc.subject | Gaussian process | - |
| dc.subject | Gaussian bridge | - |
| dc.subject | Hitsuda representation | - |
| dc.subject | Orthogonal representation | - |
| dc.subject | Prediction-invertible process | - |
| dc.subject | Volterra process | - |
| dc.subject.olddiscipline | Talousmatematiikka | - |
| dc.subject.yso | Gaussian processes | - |
| dc.subject.yso | insider trading | - |
| dc.title | Generalized Gaussian bridges | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Sottinen_Yazigi_2014.pdf
- Size:
- 275.41 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
