Generalized Gaussian bridges

Elsevier|North-Holland Publ. Co.|Bernoulli Society for Mathematical Statistics and Probability
Artikkeli
vertaisarvioitu
Artikkeli
Osuva_Sottinen_Yazigi_2014.pdf - Lopullinen julkaistu versio - 275.41 KB

Kuvaus

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
A generalized bridge is a stochastic process that is conditioned on N linear functionals of its path. We consider two types of representations: orthogonal and canonical. The orthogonal representation is constructed from the entire path of the process. Thus, the future knowledge of the path is needed. In the canonical representation the filtrations of the bridge and the underlying process coincide. The canonical representation is provided for prediction-invertible Gaussian processes. All martingales are trivially prediction-invertible. A typical non-semimartingale example of a prediction-invertible Gaussian process is the fractional Brownian motion. We apply the canonical bridges to insider trading.

Emojulkaisu

ISBN

ISSN

1879-209X
0304-4149

Aihealue

Kausijulkaisu

Stochastic processes and their applications|124

OKM-julkaisutyyppi

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä