Long-range dependent completely correlated mixed fractional Brownian motion
| annif.suggestions | stochastic processes|time series|probability calculation|time-series analysis|Viitasaari|mathematical models|motion|simulation|mathematics|Gaussian processes|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p11400|http://www.yso.fi/onto/yso/p12290|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p22747|http://www.yso.fi/onto/yso/p94487|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p706|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p38750 | en |
| dc.contributor.author | Dufitinema, Josephine | |
| dc.contributor.author | Shokrollahi, Foad | |
| dc.contributor.author | Sottinen, Tommi | |
| dc.contributor.author | Viitasaari, Lauri | |
| dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-1434-0949 | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-9983-9708 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2024-01-15T10:00:50Z | |
| dc.date.accessioned | 2025-06-25T13:08:32Z | |
| dc.date.available | 2024-01-15T10:00:50Z | |
| dc.date.issued | 2023-12-23 | |
| dc.description.abstract | In this paper we introduce the long-range dependent completely correlated mixed fractional Brownian motion (ccmfBm). This is a process that is driven by a mixture of Brownian motion (Bm) and a long-range dependent completely correlated fractional Brownian motion (fBm, ccfBm) that is constructed from the Brownian motion via the Molchan–Golosov representation. Thus, there is a single Bm driving the mixed process. In the short time-scales the ccmfBm behaves like the Bm (it has Brownian Hölder index and quadratic variation). However, in the long time-scales it behaves like the fBm (it has long-range dependence governed by the fBms Hurst index). We provide a transfer principle for the ccmfBm and use it to construct the Cameron–Martin–Girsanov–Hitsuda theorem and prediction formulas. Finally, we illustrate the ccmfBm by simulations. | - |
| dc.description.notification | © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 15 | - |
| dc.identifier.olddbid | 19766 | |
| dc.identifier.oldhandle | 10024/16763 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1566 | |
| dc.identifier.urn | URN:NBN:fi-fe202401152745 | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier | - |
| dc.relation.doi | 10.1016/j.spa.2023.104289 | - |
| dc.relation.ispartofjournal | Stochastic Processes and their Applications | - |
| dc.relation.issn | 1879-209X | - |
| dc.relation.issn | 0304-4149 | - |
| dc.relation.url | https://doi.org/10.1016/j.spa.2023.104289 | - |
| dc.relation.volume | 170 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | Scopus:85181041461 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16763 | |
| dc.subject | Cameron–Martin–Girsanov–Hitsuda theorem | - |
| dc.subject | Fractional Brownian motion | - |
| dc.subject | Mixed fractional Brownian motion | - |
| dc.subject | Prediction | - |
| dc.subject | Transfer principle | - |
| dc.subject.discipline | fi=Matematiikka|en=Mathematics| | - |
| dc.title | Long-range dependent completely correlated mixed fractional Brownian motion | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Dufitinema_Shokrollahi_Sottinen_Viitasaari_2023.pdf
- Size:
- 606.78 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
