Long-range dependent completely correlated mixed fractional Brownian motion

annif.suggestionsstochastic processes|time series|probability calculation|time-series analysis|Viitasaari|mathematical models|motion|simulation|mathematics|Gaussian processes|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p11400|http://www.yso.fi/onto/yso/p12290|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p22747|http://www.yso.fi/onto/yso/p94487|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p706|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p38750en
dc.contributor.authorDufitinema, Josephine
dc.contributor.authorShokrollahi, Foad
dc.contributor.authorSottinen, Tommi
dc.contributor.authorViitasaari, Lauri
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1434-0949-
dc.contributor.orcidhttps://orcid.org/0000-0002-9983-9708-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-01-15T10:00:50Z
dc.date.accessioned2025-06-25T13:08:32Z
dc.date.available2024-01-15T10:00:50Z
dc.date.issued2023-12-23
dc.description.abstractIn this paper we introduce the long-range dependent completely correlated mixed fractional Brownian motion (ccmfBm). This is a process that is driven by a mixture of Brownian motion (Bm) and a long-range dependent completely correlated fractional Brownian motion (fBm, ccfBm) that is constructed from the Brownian motion via the Molchan–Golosov representation. Thus, there is a single Bm driving the mixed process. In the short time-scales the ccmfBm behaves like the Bm (it has Brownian Hölder index and quadratic variation). However, in the long time-scales it behaves like the fBm (it has long-range dependence governed by the fBms Hurst index). We provide a transfer principle for the ccmfBm and use it to construct the Cameron–Martin–Girsanov–Hitsuda theorem and prediction formulas. Finally, we illustrate the ccmfBm by simulations.-
dc.description.notification© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent15-
dc.identifier.olddbid19766
dc.identifier.oldhandle10024/16763
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1566
dc.identifier.urnURN:NBN:fi-fe202401152745-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.spa.2023.104289-
dc.relation.ispartofjournalStochastic Processes and their Applications-
dc.relation.issn1879-209X-
dc.relation.issn0304-4149-
dc.relation.urlhttps://doi.org/10.1016/j.spa.2023.104289-
dc.relation.volume170-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85181041461-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16763
dc.subjectCameron–Martin–Girsanov–Hitsuda theorem-
dc.subjectFractional Brownian motion-
dc.subjectMixed fractional Brownian motion-
dc.subjectPrediction-
dc.subjectTransfer principle-
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleLong-range dependent completely correlated mixed fractional Brownian motion-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Dufitinema_Shokrollahi_Sottinen_Viitasaari_2023.pdf
Size:
606.78 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat