Probabilistic photovoltaic generation and load demand uncertainties modelling for active distribution networks hosting capacity calculations

annif.suggestionselectrical power networks|renewable energy sources|distribution of electricity|optimisation|electricity consumption|Monte Carlo methods|scenarios|voltage|capacity|uncertainty|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p15953|http://www.yso.fi/onto/yso/p6361|http://www.yso.fi/onto/yso/p3296|http://www.yso.fi/onto/yso/p15755|http://www.yso.fi/onto/yso/p16078|http://www.yso.fi/onto/yso/p1722en
dc.contributor.authorAyaz, Melike Selcen
dc.contributor.authorMalekpour, Mostafa
dc.contributor.authorAzizipanah-Abarghooee, Rasoul
dc.contributor.authorKarimi, Mazaher
dc.contributor.authorTerzija, Vladimir
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2145-4936-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-04-30T11:36:00Z
dc.date.accessioned2025-06-25T13:43:44Z
dc.date.available2024-04-30T11:36:00Z
dc.date.issued2024-04-30
dc.description.abstractWith the increasing integration of photovoltaic (PV) systems in active distribution networks (ADNs), accurate modelling of PV power generation and the network demand has become essential, especially for system operators (SO). However, existing studies have focused on deterministic representations of hourly profiles for PV generation and load consumption, which cannot thoroughly evaluate the existing uncertainties of PV power output and load demands. In this study, uncertain parameters load demand and PV power output profile will be modelled with forecasted values, and their profile will be obtained over probability density functions (PDFs). Firstly, a vast quantity of realistic load and PV generation profiles are produced over a day with 15-minute resolution, with a scenario generation method using the Monte Carlo methodology. Afterward, the generated scenarios are reduced to a set of scenarios to represent the span of all generated scenarios. A fully local reactive power regulation strategy is used in this study to evaluate the hosting capacity of the ADN. This proposed method is tested on modified 33-bus and 69-bus distribution test systems by using practical solar generation and load data. The proposed methodology results in the hosting capacity improvement by 20% besides the existing Q-Voltage and PF-Power local voltage control methods, where it has the flexibility to be implemented to any distribution feeder.-
dc.description.notification© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.identifier.olddbid20589
dc.identifier.oldhandle10024/17282
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2633
dc.identifier.urnURN:NBN:fi-fe2024043024271-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijepes.2024.110016-
dc.relation.ispartofjournalInternational Journal of Electrical Power & Energy Systems-
dc.relation.issn1879-3517-
dc.relation.issn0142-0615-
dc.relation.urlhttps://doi.org/10.1016/j.ijepes.2024.110016-
dc.relation.volume159-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17282
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleProbabilistic photovoltaic generation and load demand uncertainties modelling for active distribution networks hosting capacity calculations-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ayaz_Malekpour_Azizipanah-Abarghooee_Karimi_Terzija_2024.pdf
Size:
937.06 KB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat