Gini Coefficient and AUC in Assessing Predictive Model Performance : Effect of Ranks

dc.contributor.authorLaitinen, Erkki K.
dc.contributor.facultyfi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance|
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2026-01-12T13:26:00Z
dc.date.issued2025-10-22
dc.description.abstractThis paper deals with three traditional measures of concentration: (Corrado) Gini coefficient, adjusted Gini coefficient, and AUC. These metrics are popular methods in assessing the performance of predictive models, like credit scoring models. They are non-parametric variables and therefore only depending on the ranking of events. The three measures are closely related to each other. The adjusted Gini coefficient (Accuracy ratio, AR) is only a transformation of the Corrado Gini coefficient being in a linear relationship with AUC. It also equals to Somers’ D. This paper also introduces the measure E, which is based on a classification of the ranks of events. E produces the same result as AUC, but is simple to calculate and interpret. The features of the metrics are discussed in three numerical examples, one of which deals with credit scoring in a large imbalanced dataset (23.533 active firms and 147 bankrupt firms). Numerical examples are used to illustrate the properties of the metrics, especially at the level of ranks.
dc.description.notification© 2025 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent16
dc.format.pagerange1251-1266
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19637
dc.identifier.urnURN:NBN:fi-fe202601123092
dc.language.isoeng
dc.publisherScientific Research Publishing
dc.relation.doi10.4236/tel.2025.155070
dc.relation.ispartofjournalTheoretical economics letters
dc.relation.issn2162-2086
dc.relation.issn2162-2078
dc.relation.issue5
dc.relation.urlhttps://doi.org/10.4236/tel.2025.155070
dc.relation.volume15
dc.rightsCC BY 4.0
dc.subjectCredit Scoring; Concentration; Gini Coefficient; AUC; ROC; Imbalanced Sample
dc.subject.disciplinefi=Laskentatoimi ja rahoitus|en=Accounting and Finance|
dc.titleGini Coefficient and AUC in Assessing Predictive Model Performance : Effect of Ranks
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Laitinen_2025.pdf
Size:
949.85 KB
Format:
Adobe Portable Document Format

Kokoelmat