Tracking the Occluded Indoor Target With Scattered Millimeter Wave Signal

annif.suggestionsrobots|machine learning|artificial intelligence|locationing|safety and security|sensors|automation|signals|deep learning|data security|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p2619|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p6230|http://www.yso.fi/onto/yso/p7349|http://www.yso.fi/onto/yso/p11460|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p25766|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p5479en
dc.contributor.authorXu, Yinda
dc.contributor.authorWang, Xinjue
dc.contributor.authorKupiainen, Juhani J.
dc.contributor.authorSäe, Joonas
dc.contributor.authorBoutellier, Jani
dc.contributor.authorNurmi, Jari
dc.contributor.authorTan, Bo
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-11-19T06:17:57Z
dc.date.accessioned2025-06-25T13:51:40Z
dc.date.available2024-11-19T06:17:57Z
dc.date.issued2024-08-23
dc.description.abstractThe popularity of mobile robots in factories, warehouses, and hospitals has raised safety concerns about human-machine collisions, particularly in nonline-of-sight (NLoS) scenarios such as corners. Developing a robot capable of locating and tracking humans behind the corners will greatly mitigate risk. However, most of them cannot work in complex environments or require a costly infrastructure. This article introduces a solution that uses the reflected and diffracted millimeter wave (mmWave) radio signals to detect and locate targets behind the corner. Central to this solution is a localization convolutional neural network (L-CNN), which takes the angle-delay heatmap of the mmWave sensor as input and infers the potential target position. Furthermore, a Kalman filter is applied after L-CNN to improve the accuracy and robustness of estimated locations. A red-green-blue-depth (RGB-D) camera is attached to the mmWave sensor as the annotation system to provide accurate position labels. The results of the experimental evaluation demonstrate that our data-driven approach can achieve remarkable positioning accuracy at the 10-cm level without extensive infrastructure. In particular, the approach effectively mitigates the adverse effects of diffraction and multibounce phenomena, making the system more resilient.-
dc.description.notification© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent11-
dc.format.pagerange38102-38112-
dc.identifier.olddbid21859
dc.identifier.oldhandle10024/18268
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2878
dc.identifier.urnURN:NBN:fi-fe2024111995179-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/JSEN.2024.3447271-
dc.relation.funderAcademy of Finland-
dc.relation.funderBusiness Finland-
dc.relation.funderEuropean Union-
dc.relation.grantnumber345681-
dc.relation.grantnumber6868/31/2021-
dc.relation.ispartofjournalIEEE Sensors Journal-
dc.relation.issn1558-1748-
dc.relation.issn1530-437X-
dc.relation.issue22-
dc.relation.projectid10100828-
dc.relation.urlhttps://doi.org/10.1109/JSEN.2024.3447271-
dc.relation.volume24-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85201748042-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18268
dc.subjectAngle-delay estimation-
dc.subjectconvolutional neural network (CNN)-
dc.subjectcross-modal training-
dc.subjectfrequency-modulated continuous-wave (FMCW) radar-
dc.subjectindoor positioning-
dc.subjectnonline-of-sight (NLoS) tracking-
dc.subjectrobotics-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleTracking the Occluded Indoor Target With Scattered Millimeter Wave Signal-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Xu_Wang_Kupiainen_Säe_Boutellier_Nurmi_Tan_2024.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format

Kokoelmat