Tracking the Occluded Indoor Target With Scattered Millimeter Wave Signal
annif.suggestions | robots|machine learning|artificial intelligence|locationing|safety and security|sensors|automation|signals|deep learning|data security|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p2619|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p6230|http://www.yso.fi/onto/yso/p7349|http://www.yso.fi/onto/yso/p11460|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p25766|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p5479 | en |
dc.contributor.author | Xu, Yinda | |
dc.contributor.author | Wang, Xinjue | |
dc.contributor.author | Kupiainen, Juhani J. | |
dc.contributor.author | Säe, Joonas | |
dc.contributor.author | Boutellier, Jani | |
dc.contributor.author | Nurmi, Jari | |
dc.contributor.author | Tan, Bo | |
dc.contributor.department | Digital Economy | - |
dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
dc.contributor.orcid | https://orcid.org/0000-0001-7606-3655 | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2024-11-19T06:17:57Z | |
dc.date.accessioned | 2025-06-25T13:51:40Z | |
dc.date.available | 2024-11-19T06:17:57Z | |
dc.date.issued | 2024-08-23 | |
dc.description.abstract | The popularity of mobile robots in factories, warehouses, and hospitals has raised safety concerns about human-machine collisions, particularly in nonline-of-sight (NLoS) scenarios such as corners. Developing a robot capable of locating and tracking humans behind the corners will greatly mitigate risk. However, most of them cannot work in complex environments or require a costly infrastructure. This article introduces a solution that uses the reflected and diffracted millimeter wave (mmWave) radio signals to detect and locate targets behind the corner. Central to this solution is a localization convolutional neural network (L-CNN), which takes the angle-delay heatmap of the mmWave sensor as input and infers the potential target position. Furthermore, a Kalman filter is applied after L-CNN to improve the accuracy and robustness of estimated locations. A red-green-blue-depth (RGB-D) camera is attached to the mmWave sensor as the annotation system to provide accurate position labels. The results of the experimental evaluation demonstrate that our data-driven approach can achieve remarkable positioning accuracy at the 10-cm level without extensive infrastructure. In particular, the approach effectively mitigates the adverse effects of diffraction and multibounce phenomena, making the system more resilient. | - |
dc.description.notification | © 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 11 | - |
dc.format.pagerange | 38102-38112 | - |
dc.identifier.olddbid | 21859 | |
dc.identifier.oldhandle | 10024/18268 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2878 | |
dc.identifier.urn | URN:NBN:fi-fe2024111995179 | - |
dc.language.iso | eng | - |
dc.publisher | IEEE | - |
dc.relation.doi | 10.1109/JSEN.2024.3447271 | - |
dc.relation.funder | Academy of Finland | - |
dc.relation.funder | Business Finland | - |
dc.relation.funder | European Union | - |
dc.relation.grantnumber | 345681 | - |
dc.relation.grantnumber | 6868/31/2021 | - |
dc.relation.ispartofjournal | IEEE Sensors Journal | - |
dc.relation.issn | 1558-1748 | - |
dc.relation.issn | 1530-437X | - |
dc.relation.issue | 22 | - |
dc.relation.projectid | 10100828 | - |
dc.relation.url | https://doi.org/10.1109/JSEN.2024.3447271 | - |
dc.relation.volume | 24 | - |
dc.rights | CC BY 4.0 | - |
dc.source.identifier | Scopus:85201748042 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/18268 | |
dc.subject | Angle-delay estimation | - |
dc.subject | convolutional neural network (CNN) | - |
dc.subject | cross-modal training | - |
dc.subject | frequency-modulated continuous-wave (FMCW) radar | - |
dc.subject | indoor positioning | - |
dc.subject | nonline-of-sight (NLoS) tracking | - |
dc.subject | robotics | - |
dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
dc.title | Tracking the Occluded Indoor Target With Scattered Millimeter Wave Signal | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
dc.type.publication | article | - |
dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Xu_Wang_Kupiainen_Säe_Boutellier_Nurmi_Tan_2024.pdf
- Size:
- 1.98 MB
- Format:
- Adobe Portable Document Format