A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images

annif.suggestionsdiabetes|retinopathy|eye diseases|retina|diabetic retinopathy|neural networks (information technology)|eyes|blood vessels|machine learning|diagnostics|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p8304|http://www.yso.fi/onto/yso/p19356|http://www.yso.fi/onto/yso/p12047|http://www.yso.fi/onto/yso/p21732|http://www.yso.fi/onto/yso/p38465|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p18324|http://www.yso.fi/onto/yso/p4567|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p416en
dc.contributor.authorAli, Ghulam
dc.contributor.authorDastgir, Aqsa
dc.contributor.authorIqbal, Muhammad Waseem
dc.contributor.authorAnwar, Muhammad
dc.contributor.authorFaheem, Muhammad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-09T07:10:40Z
dc.date.accessioned2025-06-25T13:02:12Z
dc.date.available2023-10-09T07:10:40Z
dc.date.issued2023-06-01
dc.description.abstractObjective: Diabetic Retinopathy (DR) is a retinal disease that can cause damage to blood vessels in the eye, that is the major cause of impaired vision or blindness, if not treated early. Manual detection of diabetic retinopathy is time-consuming and prone to human error due to the complex structure of the eye. Methods & Results: various automatic techniques have been proposed to detect diabetic retinopathy from fundus images. However, these techniques are limited in their ability to capture the complex features underlying diabetic retinopathy, particularly in the early stages. In this study, we propose a novel approach to detect diabetic retinopathy using a convolutional neural network (CNN) model. The proposed model extracts features using two different deep learning (DL) models, Resnet50 and Inceptionv3, and concatenates them before feeding them into the CNN for classification. The proposed model is evaluated on a publicly available dataset of fundus images. The experimental results demonstrate that the proposed CNN model achieves higher accuracy, sensitivity, specificity, precision, and f1 score compared to state-of-the-art methods, with respective scores of 96.85%, 99.28%, 98.92%, 96.46%, and 98.65%.-
dc.description.notification©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange341-350-
dc.identifier.olddbid19132
dc.identifier.oldhandle10024/16328
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1384
dc.identifier.urnURN:NBN:fi-fe20231009139313-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/JTEHM.2023.3282104-
dc.relation.funderUniversity of Vaasa-
dc.relation.funderAcademy of Finland-
dc.relation.ispartofjournalIEEE Journal of Translational Engineering in Health and Medicine-
dc.relation.issn2168-2372-
dc.relation.urlhttps://doi.org/10.1109/JTEHM.2023.3282104-
dc.relation.volume11-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001012644500002-
dc.source.identifierScopus:85161580456-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16328
dc.subjectfundus images-
dc.subjectcomputer vision-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysodiabetic retinopathy-
dc.subject.ysomachine learning-
dc.titleA Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ali_Dastgir_Iqbal_Anwar_Faheem_2023.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat