Artificial Neural Network-Based Voltage Control of DC/DC Converter for DC Microgrid Applications

annif.suggestionsrenewable energy sources|control engineering|electrical power networks|power electronics|voltage|transformers (electrical devices)|adjustment systems|wind energy|neural networks (information technology)|frequency changers|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p5636|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p16778|http://www.yso.fi/onto/yso/p15755|http://www.yso.fi/onto/yso/p3606|http://www.yso.fi/onto/yso/p15400|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p22720en
dc.contributor.authorKhan, Hussain Sarwar
dc.contributor.authorMohamed, Ihab S.
dc.contributor.authorKauhaniemi, Kimmo
dc.contributor.authorLiu, Lantao
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1111-3046-
dc.contributor.orcidhttps://orcid.org/0000-0002-7429-3171-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-05-05T12:47:02Z
dc.date.accessioned2025-06-25T13:34:02Z
dc.date.available2024-01-05T23:00:04Z
dc.date.issued2022-01-05
dc.description.abstractThe rapid growth of renewable energy technology enables the concept of microgrid (MG) to be widely accepted in the power systems. Due to the advantages of the DC distribution system such as easy integration of energy storage and less system loss, DC MG attracts significant attention nowadays. The linear controller such as PI or PID is matured and extensively used by the power electronics industry, but their performance is not optimal as system parameters are changed. In this study, an artificial neural network (ANN) based voltage control strategy is proposed for the DC-DC boost converter. In this paper, the model predictive control (MPC) is used as an expert, which provides the data to train the proposed ANN. As ANN is tuned finely, then it is utilized directly to control the step-up DC converter. The main advantage of the ANN is that the neural network system identification decreases the inaccuracy of the system model even with inaccurate parameters and has less computational burden compared to MPC due to its parallel structure. To validate the performance of the proposed ANN, extensive MATLAB/Simulink simulations are carried out. The simulation results show that the ANN-based control strategy has better performance under different loading conditions comparison to the PI controller. The accuracy of the trained ANN model is about 97%, which makes it suitable to be used for DC microgrid applications.-
dc.description.notification©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-01-05
dc.embargo.terms2024-01-05
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.identifier.olddbid16136
dc.identifier.oldhandle10024/13965
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2330
dc.identifier.urnURN:NBN:fi-fe2022050533245-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE Workshop on the Electronic Grid (eGRID)-
dc.relation.doi10.1109/eGRID52793.2021.9662132-
dc.relation.funderWalter Ahlsrrom Foundation Finland-
dc.relation.funderBusiness Finland-
dc.relation.grantnumber2021/40-
dc.relation.grantnumber6844/31/2018-
dc.relation.ispartof2021 6th IEEE Workshop on the Electronic Grid (eGRID)-
dc.relation.urlhttps://doi.org/10.1109/eGRID52793.2021.9662132-
dc.source.identifierScopus:85125015623-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13965
dc.subjectANN-
dc.subjectDC/DC boost converter-
dc.subjectDC Microgrid-
dc.subjectMPC-
dc.subjectPrimary control-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleArtificial Neural Network-Based Voltage Control of DC/DC Converter for DC Microgrid Applications-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Khan_Mohamed_Kauhaniemi_Liu_2022.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat