A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant

annif.suggestionssolar energy|forecasts|machine learning|renewable energy sources|weather forecasting|People's Republic of China|energy production (process industry)|neural networks (information technology)|time series|reliability (general)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p11580|http://www.yso.fi/onto/yso/p104984|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p12290|http://www.yso.fi/onto/yso/p1629en
dc.contributor.authorWang, Fei
dc.contributor.authorLu, Xiaoxing
dc.contributor.authorMei, Shengwei
dc.contributor.authorSu, Ying
dc.contributor.authorZhen, Zhao
dc.contributor.authorZou, Zubing
dc.contributor.authorZhang, Xuemin
dc.contributor.authorYin, Rui
dc.contributor.authorDuic, Neven
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalão, João P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-20T09:13:34Z
dc.date.accessioned2025-06-25T12:19:07Z
dc.date.available2024-01-01T23:00:10Z
dc.date.issued2022-01-01
dc.description.abstractAccurate ultra-short-term PV power forecasting is essential for the power system with a high proportion of renewable energy integration, which can provide power fluctuation information hours ahead and help to mitigate the interference of the random PV power output. Most of the PV power forecasting methods mainly focus on employing local ground-based observation data, ignoring the spatial and temporal distribution and correlation characteristics of solar energy and meteorological impact factors. Therefore, a novel ultra-short-term PV power forecasting method based on the satellite image data is proposed in this paper, which combines the spatio-temporal correlation between multiple plants with power and cloud information. The associated neighboring plant is first selected by spatial-temporal cross-correlation analysis. Then the global distribution information of the cloud is extracted from satellite images as additional inputs with other general meteorological and power inputs to train the forecasting model. The proposed method is compared with several benchmark methods without considering the information of neighboring plants. Results show that the proposed method outperforms the benchmark methods and achieves a higher accuracy at 4.73%, 10.54%, and 4.88%, 11.04% for two target PV plants on a four-month validation dataset, in terms of root mean squared error and mean absolute error value, respectively.-
dc.description.notification©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-01-01
dc.embargo.terms2024-01-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid17775
dc.identifier.oldhandle10024/15247
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/34
dc.identifier.urnURN:NBN:fi-fe2023022027782-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.energy.2021.121946-
dc.relation.funderChina Three Gorges Corporation-
dc.relation.funderManagement Consulting Project of State Grid Hebei Electric Power Co. Ltd-
dc.relation.funderNational Natural Science Foundation of China-
dc.relation.grantnumberWWKY-2021-0173-
dc.relation.grantnumberSGHE0000DKWT2000464-
dc.relation.grantnumber52007092-
dc.relation.ispartofjournalEnergy-
dc.relation.issn1873-6785-
dc.relation.issn0360-5442-
dc.relation.issuePart C-
dc.relation.urlhttps://doi.org/10.1016/j.energy.2021.121946-
dc.relation.volume238-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000709434500002-
dc.source.identifierScopus:85115097887-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15247
dc.subjectPV power Forecasting-
dc.subjectSatellite image-
dc.subjectSpatio-temporal-
dc.subjectUltra-short-term-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleA satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Wang_Lu_Mei_Su_Zhen_Zou_Zhang_Yin_Duic_Shafie-khah_Catalão_2022.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat