Risk Accessment of Machine Learning Algorithms on Manipulated Dataset in Power Systems

annif.suggestionsmachine learning|data security|cyber security|algorithms|data communications networks|networks (systems)|safety and security|information networks|cyber attacks|distributed systems|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p26189|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p1957|http://www.yso.fi/onto/yso/p5569|http://www.yso.fi/onto/yso/p7349|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p27466|http://www.yso.fi/onto/yso/p21082en
dc.contributor.authorDiaba, Sayawu Yakubu
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorMekkanen, Mike
dc.contributor.authorVartiainen, Tero
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.orcidhttps://orcid.org/0000-0001-7300-0819-
dc.contributor.orcidhttps://orcid.org/0000-0003-3843-8561-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-12-18T10:44:30Z
dc.date.accessioned2025-06-25T13:06:15Z
dc.date.issued2023-07-19
dc.description.abstractThe emergence of the communication infrastructure in power systems has increased the variety and sophistication of network assaults. Intrusion Detection Systems’ (IDS) importance has increased in relation to network security. IDS, however, is no longer secure when confronted with adversarial examples, and attackers can boost assault success rates by tricking the IDS. As a result, resilience must be increased. This paper assesses the Decision Tree, Logistic regression, Support Vector Machines (SVM), Naïve Bayes, K-Nearest Neighbours (KNN), and Ensemble’s effectiveness. Using the WUSTL-IIoT-2021 dataset and CIC-IDS2017 dataset, we train the algorithms on the unmanipulated dataset and then train the algorithms on the manipulated dataset. Per the simulation results, the accuracy and prediction speed drop on the manipulated dataset while the training time rises.-
dc.description.notification©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-07-19
dc.embargo.terms2025-07-19
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.identifier.isbn979-8-3503-3230-8-
dc.identifier.olddbid19617
dc.identifier.oldhandle10024/16658
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1505
dc.identifier.urnURN:NBN:fi-fe20231218155312-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Future Energy Solutions (FES)-
dc.relation.doi10.1109/FES57669.2023.10182751-
dc.relation.isbn979-8-3503-3231-5-
dc.relation.ispartof2023 International Conference on Future Energy Solutions (FES)-
dc.relation.urlhttps://doi.org/10.1109/FES57669.2023.10182751-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16658
dc.subjectCommunication infrastructure-
dc.subjectIntrusion detection systems-
dc.subjectNetwork security-
dc.subjectPower systems-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.disciplinefi=Tietojärjestelmätiede|en=Information Systems|-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.titleRisk Accessment of Machine Learning Algorithms on Manipulated Dataset in Power Systems-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Diaba_Shafie-Khah_Mekkanen_Vartiainen_Elmusrati_2023.pdf
Size:
472.51 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat