Machine Learning Techniques for Enhanced Intrusion Detection in IoT Security

dc.contributor.authorHakami, Hanadi
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorBashir Ahmad, Majid
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486
dc.date.accessioned2026-01-29T13:58:00Z
dc.date.issued2025
dc.description.abstractNetwork Intrusion Detection Systems (NIDSs) are fundamental to safeguarding computer networks. Intrusion detection systems must become more effective as new attacks are developed and networks grow. Anomaly-based automated detection stands out due to its superior performance among the various detection techniques. However, with the increasing complexity and frequency of cyberattacks, managing vast amounts of data remains challenging for anomaly-based NIDS. Therefore, it is necessary to find an efficient method for solving the problem by using classification with an intrusion detection system which analyzes enormous amounts of traffic data. This research introduces a new model that leverages machine learning (ML) and deep learning (DL) to enhance detection effectiveness and ensure reliability. The approach optimizes data preprocessing by integrating SMOTE for effective data balancing and Pearson’s Correlation Coefficient (PCC) for feature selection. We compared several ML and DL techniques to detect and address the most efficient one for our pipeline. Compared with other approaches, LSTM and RF show superior results when tested on the WSN-DS, UNSW-NB15, and CIC-IDS 2017 datasets. Additionally, the proposed solution prevents biases from arising by addressing imbalanced datasets.en
dc.description.notification© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.pagerange31140-31158
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19723
dc.identifier.urnURN:NBN:fi-fe202601299830
dc.language.isoen
dc.publisherIEEE
dc.relation.doihttps://doi.org/10.1109/ACCESS.2025.3542227
dc.relation.funderTeknologian tutkimuskeskus VTTfi
dc.relation.funderVTT Technical Research Centre of Finlanden
dc.relation.ispartofjournalIEEE access
dc.relation.issn2169-3536
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2025.3542227
dc.relation.urlhttps://urn.fi/URN:NBN:fi-fe202601299830
dc.relation.volume13
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.source.identifierWOS:001425541100040
dc.source.identifier2-s2.0-85217974303
dc.source.identifier5b7a0137-8f87-4023-952a-6edbfafb627d
dc.source.metadataSoleCRIS
dc.subjectIntrusion detection
dc.subjectIoT
dc.subjectclassification
dc.subjectmachine/deep learning
dc.subjectrandom forests
dc.subjectlong-short-term-memory
dc.subjectIoT
dc.subjectclassification
dc.subjectmachine/deep learning
dc.subjectrandom forests
dc.subjectlong-short-term-memory
dc.subject.disciplinefi=Tietotekniikka tekn|en=Information Technology tech|
dc.titleMachine Learning Techniques for Enhanced Intrusion Detection in IoT Security
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä (vertaisarvioitu)|en=A1 Journal article (peer-reviewed)|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
nbnfi-fe202601299830.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format

Kokoelmat