Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets

annif.suggestionsstochastic processes|estimating|probability calculation|reliability (general)|statistical methods|mathematics|statistics (discipline)|simulation|water analysis|qualification|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p11400|http://www.yso.fi/onto/yso/p11349|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p1629|http://www.yso.fi/onto/yso/p3127|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p3591|http://www.yso.fi/onto/yso/p4787|http://www.yso.fi/onto/yso/p9185|http://www.yso.fi/onto/yso/p9363en
dc.contributor.authorDufitinema, Josephine
dc.contributor.authorPynnönen, Seppo
dc.contributor.authorSottinen, Tommi
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-06-10T10:49:56Z
dc.date.accessioned2025-06-25T12:37:51Z
dc.date.available2021-05-30T00:00:24Z
dc.date.issued2020-05-30
dc.description.abstractMixed fractional Brownian motion is a linear combination of Brownian motion and independent Fractional Brownian motion that is extensively used for option pricing. The consideration of the mixed process is able to capture the long–range dependence property that financial time series exhibit. This paper examines the problem of deriving simultaneously the estimators of all the unknown parameters for a model driven by the mixed fractional Brownian motion using the maximum likelihood estimation method. The consistency and asymptotic normality properties of these estimators are provided. The performance of the methodology is tested on simulated data sets, and the outcomes illustrate that the maximum likelihood technique is efficient and reliable. An empirical application of the proposed method is also made to the real financial data from four Nordic stock market indices.-
dc.description.notification©2020 Taylor & Francis Group, LLC. This is an Accepted Manuscript of an article published by Taylor & Francis in Communications in statistics: simulation and computation on 30 May 2020, available online: http://www.tandfonline.com/10.1080/03610918.2020.1764581.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2021-05-30
dc.embargo.terms2021-05-30
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent23-
dc.identifier.olddbid12369
dc.identifier.oldhandle10024/11188
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/602
dc.identifier.urnURN:NBN:fi-fe2020061042612-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/03610918.2020.1764581-
dc.relation.ispartofjournalCommunications in statistics: simulation and computation-
dc.relation.issn1532-4141-
dc.relation.issn0361-0918-
dc.relation.urlhttps://doi.org/10.1080/03610918.2020.1764581-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11188
dc.subjectMixed fractional Brownian motion-
dc.subjectLong–range dependence-
dc.subjectMaximum likelihood estimation-
dc.subjectNordic stock market indices-
dc.subject.olddisciplineMatematiikka-
dc.subject.ysostochastic processes-
dc.subject.ysoestimating-
dc.subject.ysoprobability calculation-
dc.subject.ysoreliability (general)-
dc.subject.ysostatistical methods-
dc.subject.ysomathematics-
dc.subject.ysostatistics (discipline)-
dc.subject.ysosimulation-
dc.subject.ysowater analysis-
dc.subject.ysoqualification-
dc.titleMaximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Dufitinema_Pynnönen_Sottinen_2020.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat