Machine-Learning-Based Home Energy Management Framework via Residents' Feedback

annif.suggestionsenergy management|renewable energy sources|energy consumption (energy technology)|smart houses|energy technology|smart grids|energy efficiency|residence|energy|energy saving|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p2388|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p2382|http://www.yso.fi/onto/yso/p24344|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p8328|http://www.yso.fi/onto/yso/p1797|http://www.yso.fi/onto/yso/p1310|http://www.yso.fi/onto/yso/p2386en
dc.contributor.authorEbrahimi, Mahoor
dc.contributor.authorFonseca, José M.
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorOsório, Gerardo J.
dc.contributor.authorCatalão, João P.S.
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-03-12T19:00:17Z
dc.date.accessioned2025-06-25T14:00:08Z
dc.date.issued2024-10-04
dc.description.abstractThis study introduces a smart home energy management (SHEM) framework using an artificial neural network (ANN) approach that incorporates user feedback to gauge preferences regarding cost and comfort. The SHEM framework aims to minimize energy costs by adjusting the operation of home devices according to hourly electricity prices. However, deviations from user preferences can lead to varying levels of dissatisfaction. Residents provide feedback at the end of each day, rating their satisfaction with the energy management system on a scale from 0% (completely dissatisfied) to 100% (completely satisfied). The findings reveal how prioritizing dissatisfaction over cost affects energy management, overall cost, and total dissatisfaction. The ANN-based framework is then tested with two artificial users, demonstrating that the proposed SHEM framework can accurately learn to prioritize dissatisfaction over cost within a few days of operation.-
dc.description.notification© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2026-10-04
dc.embargo.terms2026-10-04
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.identifier.isbn979-8-3503-8649-3-
dc.identifier.olddbid22687
dc.identifier.oldhandle10024/18878
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3150
dc.identifier.urnURN:NBN:fi-fe2025031217512-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Smart Energy Systems and Technologies (SEST)-
dc.relation.doi10.1109/SEST61601.2024.10694198-
dc.relation.isbn979-8-3503-8650-9-
dc.relation.ispartof2024 International Conference on Smart Energy Systems and Technologies (SEST)-
dc.relation.issn2836-4678-
dc.relation.issn2836-4678-
dc.relation.projectidHorizon Europe project DiTArtIS GA number 101079242-
dc.relation.urlhttps://doi.org/10.1109/SEST61601.2024.10694198-
dc.source.identifier2-s2.0-85207645109-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18878
dc.subjectMachine learning; Residents satisfaction; smart home energy management (SHEM)-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysoenergy management-
dc.titleMachine-Learning-Based Home Energy Management Framework via Residents' Feedback-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ebrahimi_Fonseca_Shafie-Khah_Osorio_Catalao_2024.pdf
Size:
1004.79 KB
Format:
Adobe Portable Document Format

Kokoelmat