Stochastic volatility forecasting of the Finnish housing market
| annif.suggestions | volatility (societal properties)|prices|housing market|mathematical models|economic models|econometrics|security market|housings|GARCH models|real property|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p10771|http://www.yso.fi/onto/yso/p750|http://www.yso.fi/onto/yso/p13718|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p15699|http://www.yso.fi/onto/yso/p13480|http://www.yso.fi/onto/yso/p12456|http://www.yso.fi/onto/yso/p256|http://www.yso.fi/onto/yso/p38162|http://www.yso.fi/onto/yso/p6712 | en |
| dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
| dc.contributor.editor | Dufitinema, Josephine | |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2020-07-27T13:50:58Z | |
| dc.date.accessioned | 2025-06-25T12:43:19Z | |
| dc.date.available | 2020-07-27T13:50:58Z | |
| dc.date.issued | 2020-07-26 | |
| dc.description.abstract | The purpose of the article is to assess the in-sample fit and the out-of-sample forecasting performances of four stochastic volatility (SV) models in the Finnish housing market. The competing models are the vanilla SV, the SV model where the latent volatility follows a stationary AR(2) process, the heavy-tailed SV and the SV with leverage effects. The models are estimated using Bayesian technique, and the results reveal that the SV with leverage effects is the best model for modelling the Finnish house price volatility. The heavy-tailed SV model provides accurate out-of-sample volatility forecasts in most of the studied regions. Additionally, the models’ performances are noted to vary across almost all cities and sub-areas, and by apartment types. Moreover, the AR(2) component substantially improves the in-sample fit of the standard SV, but it is unimportant for the out-of-sample forecasting performance. The study outcomes have crucial implications, such as portfolio management and investment decision-making. To establish suitable time-series volatility forecasting models of this housing market, these study outcomes will be compared to the performances of their GARCH models counterparts. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 24 | - |
| dc.identifier.olddbid | 12492 | |
| dc.identifier.oldhandle | 10024/11276 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/789 | |
| dc.identifier.urn | URN:NBN:fi-fe2020072747668 | - |
| dc.language.iso | eng | - |
| dc.publisher | Taylor & Francis | - |
| dc.relation.doi | 10.1080/00036846.2020.1795074 | - |
| dc.relation.ispartofjournal | Journal of applied economics | - |
| dc.relation.issn | 1667-6726 | - |
| dc.relation.issn | 1514-0326 | - |
| dc.relation.url | https://doi.org/10.1080/00036846.2020.1795074 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/11276 | |
| dc.subject | Stochastic volatility | - |
| dc.subject | Bayesian estimation | - |
| dc.subject | forecasting | - |
| dc.subject | Finland | - |
| dc.subject | house prices | - |
| dc.subject.olddiscipline | Matematiikka | - |
| dc.subject.yso | volatility (societal properties) | - |
| dc.subject.yso | prices | - |
| dc.subject.yso | housing market | - |
| dc.subject.yso | mathematical models | - |
| dc.subject.yso | economic models | - |
| dc.subject.yso | econometrics | - |
| dc.subject.yso | security market | - |
| dc.subject.yso | housings | - |
| dc.subject.yso | GARCH models | - |
| dc.subject.yso | real property | - |
| dc.title | Stochastic volatility forecasting of the Finnish housing market | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Dufitinema_2020.pdf
- Size:
- 703.03 KB
- Format:
- Adobe Portable Document Format
- Description:
- article
