Stochastic volatility forecasting of the Finnish housing market

annif.suggestionsvolatility (societal properties)|prices|housing market|mathematical models|economic models|econometrics|security market|housings|GARCH models|real property|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p10771|http://www.yso.fi/onto/yso/p750|http://www.yso.fi/onto/yso/p13718|http://www.yso.fi/onto/yso/p11401|http://www.yso.fi/onto/yso/p15699|http://www.yso.fi/onto/yso/p13480|http://www.yso.fi/onto/yso/p12456|http://www.yso.fi/onto/yso/p256|http://www.yso.fi/onto/yso/p38162|http://www.yso.fi/onto/yso/p6712en
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.editorDufitinema, Josephine
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-07-27T13:50:58Z
dc.date.accessioned2025-06-25T12:43:19Z
dc.date.available2020-07-27T13:50:58Z
dc.date.issued2020-07-26
dc.description.abstractThe purpose of the article is to assess the in-sample fit and the out-of-sample forecasting performances of four stochastic volatility (SV) models in the Finnish housing market. The competing models are the vanilla SV, the SV model where the latent volatility follows a stationary AR(2) process, the heavy-tailed SV and the SV with leverage effects. The models are estimated using Bayesian technique, and the results reveal that the SV with leverage effects is the best model for modelling the Finnish house price volatility. The heavy-tailed SV model provides accurate out-of-sample volatility forecasts in most of the studied regions. Additionally, the models’ performances are noted to vary across almost all cities and sub-areas, and by apartment types. Moreover, the AR(2) component substantially improves the in-sample fit of the standard SV, but it is unimportant for the out-of-sample forecasting performance. The study outcomes have crucial implications, such as portfolio management and investment decision-making. To establish suitable time-series volatility forecasting models of this housing market, these study outcomes will be compared to the performances of their GARCH models counterparts.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent24-
dc.identifier.olddbid12492
dc.identifier.oldhandle10024/11276
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/789
dc.identifier.urnURN:NBN:fi-fe2020072747668-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/00036846.2020.1795074-
dc.relation.ispartofjournalJournal of applied economics-
dc.relation.issn1667-6726-
dc.relation.issn1514-0326-
dc.relation.urlhttps://doi.org/10.1080/00036846.2020.1795074-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11276
dc.subjectStochastic volatility-
dc.subjectBayesian estimation-
dc.subjectforecasting-
dc.subjectFinland-
dc.subjecthouse prices-
dc.subject.olddisciplineMatematiikka-
dc.subject.ysovolatility (societal properties)-
dc.subject.ysoprices-
dc.subject.ysohousing market-
dc.subject.ysomathematical models-
dc.subject.ysoeconomic models-
dc.subject.ysoeconometrics-
dc.subject.ysosecurity market-
dc.subject.ysohousings-
dc.subject.ysoGARCH models-
dc.subject.ysoreal property-
dc.titleStochastic volatility forecasting of the Finnish housing market-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Dufitinema_2020.pdf
Size:
703.03 KB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat