Frequency-Domain Decomposition and Deep Learning Based Solar PV Power Ultra-Short-Term Forecasting Model

annif.suggestionsforecasts|solar energy|power plants|renewable energy sources|electrical power networks|electrical engineering|production of electricity|weather forecasting|future|models (objects)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p11481|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p5561|http://www.yso.fi/onto/yso/p11580|http://www.yso.fi/onto/yso/p817|http://www.yso.fi/onto/yso/p510en
dc.contributor.authorYan, Jichuan
dc.contributor.authorHu, Lin
dc.contributor.authorZhen, Zhao
dc.contributor.authorWang, Fei
dc.contributor.authorQiu, Gang
dc.contributor.authorLi, Yu
dc.contributor.authorYao, Liangzhong
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalão, João P. S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-01-13T13:59:18Z
dc.date.accessioned2025-06-25T13:25:04Z
dc.date.available2023-04-15T22:00:10Z
dc.date.issued2021-04-25
dc.description.abstractUltra-short-term photovoltaic (PV) power forecasting can support the real-time dispatching of the power grid. However, PV power has great fluctuations due to various meteorological factors, which increase energy prices and cause difficulties in managing the grid. This article proposes an ultra-short-term PV power forecasting model based on the optimal frequency-domain decomposition and deep learning. First, the optimal frequency demarcation points for decomposition components are obtained through frequency-domain analysis. Then, the PV power is decomposed into the low-frequency and high-frequency components, which supports the rationality of decomposition results and solves the problem that the current decomposition model only uses the direct decomposition method and the decomposition components are not physical. Then, a convolutional neural network (CNN) is used to forecast the low-frequency and high-frequency components, and the final forecasting result is obtained by addition reconstruction. Based on the actual PV data in heavy rain days, the mean absolute percentage error (MAPE) of the proposed forecasting model is decreased by 52.97%, 64.07%, and 31.21%, compared with discrete wavelet transform, variational mode decomposition, and direct prediction models. In addition, compared with recurrent neural network and long-short-term memory model, the MAPE of the CNN forecasting model is decreased by 23.64% and 46.22%, and the training efficiency of the CNN forecasting model is improved by 85.63% and 87.68%. The results fully show that the proposed model in this article can improve both forecasting accuracy and time efficiency significantly.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-04-15
dc.embargo.terms2023-04-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.format.pagerange3282-3295-
dc.identifier.olddbid15358
dc.identifier.oldhandle10024/13422
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2069
dc.identifier.urnURN:NBN:fi-fe202201132306-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TIA.2021.3073652-
dc.relation.funderNational Key R&DProgram of China Technology and application of wind power/photovoltaic power prediction for promoting renewable energy consumption-
dc.relation.funderEponymous Complement S&T Program of State Grid Corporation of China-
dc.relation.grantnumber2018YFB0904200-
dc.relation.grantnumberSGLNDKOOKJJS1800266-
dc.relation.ispartofjournalIEEE Transactions on Industry Applications-
dc.relation.issn1939-9367-
dc.relation.issn0093-9994-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1109/TIA.2021.3073652-
dc.relation.volume57-
dc.source.identifierWOS: 000673633200006-
dc.source.identifierScopus: 85104606655-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13422
dc.subjectDecomposition-
dc.subjectDeep Learning (DL)-
dc.subjectfrequency domain-
dc.subjectphotovoltaic (PV) power forecasting-
dc.subjectultra-short term-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleFrequency-Domain Decomposition and Deep Learning Based Solar PV Power Ultra-Short-Term Forecasting Model-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Yan_Hu_Zhen_Wang_Qiu_Li_Yao_Shafie-khah_Catalão_2021.pdf
Size:
4.29 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat