Generalized Schur Functions as Multivalent Functions

Springer
Artikkeli
vertaisarvioitu
Artikkeli
Osuva_Wietsma_2021.pdf - Hyväksytty kirjoittajan käsikirjoitus - 224.59 KB

Kuvaus

©2021 Springer. This is a post-peer-review, pre-copyedit version of an article published in Complex Analysis and Operator Theory. The final authenticated version is available online at: https://doi.org/10.1007/s11785-020-01071-6
The multivalency approach to generalized Nevanlinna functions established in Wietsma (Indag Math 29:997–1008, 2018) is here extended to the related class of generalized Schur functions giving thereby rise to new characterizations for this class of functions as well as a straightforward function-theoretical proof of its factorization. In particular, this multivalency approach explains how the well-known factorizations of the two mentioned classes of functions differ from each other. Indeed, by this approach a new factorization of generalized Schur functions is obtained which is more directly connected to the factorization of generalized Nevanlinna functions. These results demonstrate that multivalency is a valuable concept for the complete understanding of the mentioned classes of functions.

Emojulkaisu

ISBN

ISSN

1661-8262
1661-8254

Aihealue

Kausijulkaisu

Complex Analysis and Operator Theory|15

OKM-julkaisutyyppi

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä