Generalized Schur Functions as Multivalent Functions

annif.suggestionscomplex analysis|functional analysis|functions (mathematical methods)|mathematics|complex-valued functions|probability calculation|operators|algebra|analytic functions|inequalities (mathematics)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p18494|http://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p7097|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p13391|http://www.yso.fi/onto/yso/p4746|http://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p12498|http://www.yso.fi/onto/yso/p7096|http://www.yso.fi/onto/yso/p15720en
dc.contributor.authorWietsma, Hendrik Luit
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-0927-4756-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-05-05T07:33:10Z
dc.date.accessioned2025-06-25T13:32:17Z
dc.date.available2022-05-05T07:33:10Z
dc.date.issued2021-01-14
dc.description.abstractThe multivalency approach to generalized Nevanlinna functions established in Wietsma (Indag Math 29:997–1008, 2018) is here extended to the related class of generalized Schur functions giving thereby rise to new characterizations for this class of functions as well as a straightforward function-theoretical proof of its factorization. In particular, this multivalency approach explains how the well-known factorizations of the two mentioned classes of functions differ from each other. Indeed, by this approach a new factorization of generalized Schur functions is obtained which is more directly connected to the factorization of generalized Nevanlinna functions. These results demonstrate that multivalency is a valuable concept for the complete understanding of the mentioned classes of functions.-
dc.description.notification©2021 Springer. This is a post-peer-review, pre-copyedit version of an article published in Complex Analysis and Operator Theory. The final authenticated version is available online at: https://doi.org/10.1007/s11785-020-01071-6-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid16127
dc.identifier.oldhandle10024/13958
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2284
dc.identifier.urnURN:NBN:fi-fe2022050532849-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.doi10.1007/s11785-020-01071-6-
dc.relation.ispartofjournalComplex Analysis and Operator Theory-
dc.relation.issn1661-8262-
dc.relation.issn1661-8254-
dc.relation.issue1-
dc.relation.urlhttps://doi.org/10.1007/s11785-020-01071-6-
dc.relation.volume15-
dc.source.identifierWOS:000609336900001-
dc.source.identifierScopus:85099361836-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13958
dc.subjectFactorizations-
dc.subjectGeneralized Nevanlinna functions-
dc.subjectGeneralized Schur functions-
dc.subjectMultivalent functions-
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleGeneralized Schur Functions as Multivalent Functions-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Wietsma_2021.pdf
Size:
224.59 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat