Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved moth search algorithm with mutation operator for numerical optimization problems

Ghaleb, Sanaa A.A.; Mohamad, Mumtazimah; Ghanem, Waheed Ali Hussein Mohammed; Alhadi, Arifah Che; Nasser, Abdullah B.; Aldowah, Hanan (2024-08)

 
Katso/Avaa
Osuva_Ghaleb_Mohamad_Ghanem_Alhadi_Nasser_Aldowah_2024.pdf (693.7Kb)
Lataukset: 

URI
https://doi.org/10.11591/ijeecs.v35.i2.pp1022-1031

Ghaleb, Sanaa A.A.
Mohamad, Mumtazimah
Ghanem, Waheed Ali Hussein Mohammed
Alhadi, Arifah Che
Nasser, Abdullah B.
Aldowah, Hanan
Institute of Advanced Engineering and Science
08 / 2024
doi:10.11591/ijeecs.v35.i2.pp1022-1031
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2025061266946

Kuvaus

vertaisarvioitu
©2024 Authors. This is an open access article under the CC BY-SA license.
Tiivistelmä
The moth search algorithm (MSA) is a meta-heuristic optimization technique inspired by moth behavior, has shown remarkable efficacy in solving optimization challenges. However, its poor exploration capability results in an imbalance between exploitation and exploration. To address this issue, this research introduces a new mutation operator to enhance exploration by increasing population diversity. The proposed enhanced moth search algorithm (EMSA) aims to expedite convergence and improve overall robustness by exploring new solutions more effectively. Evaluation on ten benchmark functions demonstrates EMSA's superior exploration capabilities, efficiently tackling optimization problems and yielding more optimal solutions within the search space. Compared to conventional MSA and other established algorithms, EMSA delivers well-balanced results, showcasing its effectiveness in optimizing the search space. In the future, the EMSA could potentially find applications in addressing real-world engineering optimization challenges.
Kokoelmat
  • Artikkelit [3312]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste