Improved moth search algorithm with mutation operator for numerical optimization problems

annif.suggestionsalgorithms|optimisation|mutations|machine learning|Malaysia|search algorithms|operations research|efficiency (properties)|development (active)|search engines|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p15346|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105717|http://www.yso.fi/onto/yso/p37865|http://www.yso.fi/onto/yso/p13475|http://www.yso.fi/onto/yso/p8329|http://www.yso.fi/onto/yso/p4230|http://www.yso.fi/onto/yso/p6999en
dc.contributor.authorGhaleb, Sanaa A.A.
dc.contributor.authorMohamad, Mumtazimah
dc.contributor.authorGhanem, Waheed Ali Hussein Mohammed
dc.contributor.authorAlhadi, Arifah Che
dc.contributor.authorNasser, Abdullah B.
dc.contributor.authorAldowah, Hanan
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-5377-999X-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-06-12T04:46:24Z
dc.date.accessioned2025-06-25T13:47:45Z
dc.date.available2025-06-12T04:46:24Z
dc.date.issued2024-08
dc.description.abstractThe moth search algorithm (MSA) is a meta-heuristic optimization technique inspired by moth behavior, has shown remarkable efficacy in solving optimization challenges. However, its poor exploration capability results in an imbalance between exploitation and exploration. To address this issue, this research introduces a new mutation operator to enhance exploration by increasing population diversity. The proposed enhanced moth search algorithm (EMSA) aims to expedite convergence and improve overall robustness by exploring new solutions more effectively. Evaluation on ten benchmark functions demonstrates EMSA's superior exploration capabilities, efficiently tackling optimization problems and yielding more optimal solutions within the search space. Compared to conventional MSA and other established algorithms, EMSA delivers well-balanced results, showcasing its effectiveness in optimizing the search space. In the future, the EMSA could potentially find applications in addressing real-world engineering optimization challenges.-
dc.description.notification©2024 Authors. This is an open access article under the CC BY-SA license.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange1022-1031-
dc.identifier.olddbid24054
dc.identifier.oldhandle10024/19718
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2757
dc.identifier.urnURN:NBN:fi-fe2025061266946-
dc.language.isoeng-
dc.publisherInstitute of Advanced Engineering and Science-
dc.relation.doi10.11591/ijeecs.v35.i2.pp1022-1031-
dc.relation.funderUniversiti Sultan Zainal Abidin-
dc.relation.funderUniversiti Malaysia Terengganu-
dc.relation.grantnumberUMT/TAPE RG 2020/55225-
dc.relation.ispartofjournalIndonesian journal of electrical engineering and computer science-
dc.relation.issn2502-4760-
dc.relation.issn2502-4752-
dc.relation.issue2-
dc.relation.urlhttps://doi.org/10.11591/ijeecs.v35.i2.pp1022-1031-
dc.relation.volume35-
dc.rightsCC BY-SA 4.0-
dc.source.identifier2-s2.0-85195101388-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19718
dc.subjectExploitation; Exploration; Meta-heuristic; Moth search algorithm; Mutation operator; Optimization algorithm-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysoalgorithms-
dc.subject.ysooptimisation-
dc.subject.ysomutations-
dc.subject.ysosearch algorithms-
dc.titleImproved moth search algorithm with mutation operator for numerical optimization problems-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ghaleb_Mohamad_Ghanem_Alhadi_Nasser_Aldowah_2024.pdf
Size:
693.71 KB
Format:
Adobe Portable Document Format

Kokoelmat