Sequences of Operators, Monotone in the Sense of Contractive Domination
Pysyvä osoite
Kuvaus
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
A sequence of operators Tn from a Hilbert space H to Hilbert spaces Kn which is nondecreasing in the sense of contractive domination is shown to have a limit which is still a linear operator T from H to a Hilbert space K. Moreover, the closability or closedness of Tn is preserved in the limit. The closures converge likewise and the connection between the limits is investigated. There is no similar way of dealing directly with linear relations. However, the sequence of closures is still nondecreasing and then the convergence is governed by the monotonicity principle. There are some related results for nonincreasing sequences.
Emojulkaisu
ISBN
ISSN
1661-8262
1661-8254
1661-8254
Aihealue
Kausijulkaisu
Complex Analysis and Operator Theory|18
OKM-julkaisutyyppi
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä