Sequences of Operators, Monotone in the Sense of Contractive Domination

annif.suggestionsmathematics|operators|Hilbert space|mathematical analysis|functional analysis|function analysis|linear algebra|vectors (mathematical concepts)|topology|complex analysis|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p19485|http://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p6850|http://www.yso.fi/onto/yso/p16733|http://www.yso.fi/onto/yso/p12298|http://www.yso.fi/onto/yso/p14067|http://www.yso.fi/onto/yso/p18494en
dc.contributor.authorHassi, S.
dc.contributor.authorde Snoo, H. S. V.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0102-1087-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-05-06T08:44:51Z
dc.date.accessioned2025-06-25T13:16:06Z
dc.date.available2024-05-06T08:44:51Z
dc.date.issued2024-04-15
dc.description.abstractA sequence of operators Tn from a Hilbert space H to Hilbert spaces Kn which is nondecreasing in the sense of contractive domination is shown to have a limit which is still a linear operator T from H to a Hilbert space K. Moreover, the closability or closedness of Tn is preserved in the limit. The closures converge likewise and the connection between the limits is investigated. There is no similar way of dealing directly with linear relations. However, the sequence of closures is still nondecreasing and then the convergence is governed by the monotonicity principle. There are some related results for nonincreasing sequences.-
dc.description.notification© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent28-
dc.identifier.olddbid20657
dc.identifier.oldhandle10024/17294
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1813
dc.identifier.urnURN:NBN:fi-fe2024050626882-
dc.language.isoeng-
dc.publisherSpringer Nature-
dc.relation.doi10.1007/s11785-024-01507-3-
dc.relation.ispartofjournalComplex Analysis and Operator Theory-
dc.relation.issn1661-8262-
dc.relation.issn1661-8254-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1007/s11785-024-01507-3-
dc.relation.volume18-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001204731900001-
dc.source.identifierScopus:85190473136-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17294
dc.subjectDomination of linear relations-
dc.subjectMonotonicity principle-
dc.subjectNondecreasing sequences of linear relations in the sense of domination-
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleSequences of Operators, Monotone in the Sense of Contractive Domination-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Hassi_de Snoo_2024.pdf
Size:
295.22 KB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat