Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

An improved automated PQD classification method for distributed generators with hybrid SVM-based approach using un-decimated wavelet transform

Yılmaz, Alper; Küçüker, Ahmet; Bayrak, Gokay; Ertekin, Davut; Shafie-khah, Miadreza; Guerrero, Josep M. (2022-03-01)

 
Katso/Avaa
Artikkeli (13.11Mb)
Huom!
Tiedosto avautuu julkiseksi:
: 01.03.2024
URI
https://doi.org/10.1016/j.ijepes.2021.107763

Yılmaz, Alper
Küçüker, Ahmet
Bayrak, Gokay
Ertekin, Davut
Shafie-khah, Miadreza
Guerrero, Josep M.
Elsevier
01.03.2022
doi:10.1016/j.ijepes.2021.107763
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023022228343

Kuvaus

vertaisarvioitu
©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/
Tiivistelmä
Artificial intelligence (AI) approaches are usually coupled with the wavelet transform (WT) for feature extraction to classify the power quality disturbances (PQDs). Therefore, selecting a useful WT-based signal processing approach is required for a reliable classification, especially in real-time applications. In this study, a new hybrid, un-decimated wavelet-transform (UWT)-based feature extraction method using a support vector machine (SVM) with a “á trous” algorithm is proposed to classify PQDs in distributed generators (DGs). The proposed method was performed in a real-time application of a DG system to classify PQDs. The derived features were tested on five different machine learning (ML) models by determining the most appropriate classification technique for the proposed UWT-based feature extraction method. An experimental DG system is constituted in the laboratory using a LabVIEW environment, and the proposed method is tested under different grid conditions. Besides, other well-known and studied conventional ML methods were also tested under 25 dB, 30 dB, and 40 dB noise and compared to the developed method. The experimental and simulation results show that the features extracted with the proposed UWT-based method provide much more successful results in classification than the existing wavelet methods in the literature. Furthermore, the proposed method's noise sensitivity performance is much better than other conventional wavelet algorithms, especially in real-time applications.
Kokoelmat
  • Artikkelit [2337]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste