An improved automated PQD classification method for distributed generators with hybrid SVM-based approach using un-decimated wavelet transform

annif.suggestionsmachine learning|signal processing|distributed systems|deep learning|neural networks (information technology)|algorithms|distribution of electricity|microgrids|signal analysis|artificial intelligence|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p21082|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p26805|http://www.yso.fi/onto/yso/p2616en
dc.contributor.authorYılmaz, Alper
dc.contributor.authorKüçüker, Ahmet
dc.contributor.authorBayrak, Gokay
dc.contributor.authorErtekin, Davut
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorGuerrero, Josep M.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-22T14:02:05Z
dc.date.accessioned2025-06-25T12:23:48Z
dc.date.available2024-03-01T23:00:07Z
dc.date.issued2022-03-01
dc.description.abstractArtificial intelligence (AI) approaches are usually coupled with the wavelet transform (WT) for feature extraction to classify the power quality disturbances (PQDs). Therefore, selecting a useful WT-based signal processing approach is required for a reliable classification, especially in real-time applications. In this study, a new hybrid, un-decimated wavelet-transform (UWT)-based feature extraction method using a support vector machine (SVM) with a “á trous” algorithm is proposed to classify PQDs in distributed generators (DGs). The proposed method was performed in a real-time application of a DG system to classify PQDs. The derived features were tested on five different machine learning (ML) models by determining the most appropriate classification technique for the proposed UWT-based feature extraction method. An experimental DG system is constituted in the laboratory using a LabVIEW environment, and the proposed method is tested under different grid conditions. Besides, other well-known and studied conventional ML methods were also tested under 25 dB, 30 dB, and 40 dB noise and compared to the developed method. The experimental and simulation results show that the features extracted with the proposed UWT-based method provide much more successful results in classification than the existing wavelet methods in the literature. Furthermore, the proposed method's noise sensitivity performance is much better than other conventional wavelet algorithms, especially in real-time applications.-
dc.description.notification©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-03-01
dc.embargo.terms2024-03-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent15-
dc.identifier.olddbid17810
dc.identifier.oldhandle10024/15276
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/163
dc.identifier.urnURN:NBN:fi-fe2023022228343-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijepes.2021.107763-
dc.relation.funderScientific Research Projects Unit of Bursa Technical University, Bursa, Turkey-
dc.relation.grantnumber182N06-
dc.relation.grantnumber190Y018-
dc.relation.ispartofjournalInternational Journal of Electrical Power & Energy Systems [Open panel below]-
dc.relation.issn1879-3517-
dc.relation.issn0142-0615-
dc.relation.urlhttps://doi.org/10.1016/j.ijepes.2021.107763-
dc.relation.volume136-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000718036300001-
dc.source.identifierScopus:85118579718-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15276
dc.subjectDistributed generation-
dc.subjectPower quality disturbances-
dc.subjectUn-decimated wavelet transform-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomachine learning-
dc.titleAn improved automated PQD classification method for distributed generators with hybrid SVM-based approach using un-decimated wavelet transform-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Yılmaz_Küçüker_Bayrak_Ertekin_Shafie-Khah_Guerrero_2022.pdf
Size:
13.12 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat