AC Microgrids Protection : A Digital Coordinated Adaptive Scheme

Artikkeli
Osuva_Hussain_Khayat_Golestan_Nasir_Vasquez_Guerrero_Kauhaniemi_2021.pdf - Lopullinen julkaistu versio - 2.61 MB

Kuvaus

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
This research was funded by the Department of Energy Technology, Aalborg University, under the Villum Investigator Grant 25920 as a part of the Villum Investigator Program CROM funded by the Villum Foundation.
A significant challenge for designing a coordinated and effective protection architecture of a microgrid (MG) is the aim of an efficient, reliable, and fast protection scheme for both the grid-connected and islanded modes of operation. To this end, bidirectional power flow, varying short-circuit power, low voltage ride-through (LVRT) capability, and the plug-and-play characteristics of distributed generation units (DGUs), which are key issues in a MG system must be considered; otherwise, a mal-operation of protection devices (PDs) may occur. In this sense, a conventional protection system with a single threshold/setting may not be able to fully protect an MG system. To tackle this challenge, this work presents a comprehensive coordinated adaptive protection scheme for AC MGs that can tune their protection setting according to the system states and the operation mode, and is able to switch the PDs’ setting. In the first step of the proposed adaptive algorithm, an offline setting will be adopted for selective and sensitive fault detection, isolation, and coordination among proposed protective modules. As any change in the system is detected by the proposed algorithm in the online step, a new set of setting for proposed modules will be performed to adapt the settings accordingly. In this way, a new set of settings are adapted to maintain a fast and reliable operation, which covers selective, sensitive, and adaptive requirements. The pickup current (Ip) and time multiple settings (TMS) of directional over-current relays (DOCR), as well as coordinated time delays for the proposed protection scheme for both of the grid-connected and islanded modes of operation, are calculated offline. Then, an online adaptive protection scheme is proposed to detect different fault types in different locations. The simulation results show that the proposed method provides a coordinated reliable solution, which can detect and isolate fault conditions in a fast, selective and coordinated adaptive pattern.

Emojulkaisu

ISBN

ISSN

2076-3417

Aihealue

Kausijulkaisu

Applied Sciences|11

OKM-julkaisutyyppi

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä