Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer

Alabi, Rasheed Omobolaji; Mäkitie, Antti A.; Pirinen, Matti; Elmusrati, Mohammed; Leivo, Ilmo; Almangush, Alhadi (2021-01-01)

 
Katso/Avaa
article (2.057Mb)
Lataukset: 

URI
https://doi.org/10.1016/j.ijmedinf.2020.104313

Alabi, Rasheed Omobolaji
Mäkitie, Antti A.
Pirinen, Matti
Elmusrati, Mohammed
Leivo, Ilmo
Almangush, Alhadi
Elsevier
01.01.2021
doi:10.1016/j.ijmedinf.2020.104313
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020113098663

Kuvaus

vertaisarvioitu
©2020 Elsevier Ltd. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/
Tiivistelmä
Background: The prediction of overall survival in tongue cancer is important for planning of personalized care and patient counselling.
Objectives: This study compares the performance of a nomogram with a machine learning model to predict overall survival in tongue cancer. The nomogram and machine learning model were built using a large data set from the Surveillance, Epidemiology, and End Results (SEER) program database. The comparison is necessary to provide the clinicians with a comprehensive, practical, and most accurate assistive system to predict overall survival of this patient population.
Methods: The data set used included the records of 7596 tongue cancer patients. The considered machine learning algorithms were logistic regression, support vector machine, Bayes point machine, boosted decision tree, decision forest, and decision jungle. These algorithms were mainly evaluated in terms of the areas under the receiver-operating characteristic (ROC) curve (AUC) and accuracy values. The performance of the algorithm that produced the best result was compared with a nomogram to predict overall survival in tongue cancer patients. Results: The boosted decision-tree algorithm outperformed other algorithms. When compared with a nomogram using external validation data, the boosted decision tree produced an accuracy of 88.7% while the nomogram showed an accuracy of 60.4%. In addition, it was found that age of patient, T stage, radiotherapy, and the surgical resection were the most prominent features with significant influence on the machine learning model’s performance to predict overall survival.
Conclusion: The machine learning model provides more personalized and reliable prognostic information of tongue cancer than the nomogram. However, the level of transparency offered by the nomogram in estimating patients’ outcomes seems more confident and strengthened the principle of shared decision making between the patient and clinician. Therefore, a combination of a nomogram – machine learning (NomoML) predictive model may help to improve
care, provides information to patients, and facilitates the clinicians in making tongue cancer management-related decisions.
Kokoelmat
  • Artikkelit [3271]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste