Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer

annif.suggestionscancerous diseases|forecasts|machine learning|tongue cancer|cancer treatments|diagnostics|renal cancer|symptoms|coping|construction machines|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p16988|http://www.yso.fi/onto/yso/p27422|http://www.yso.fi/onto/yso/p416|http://www.yso.fi/onto/yso/p18534|http://www.yso.fi/onto/yso/p2414|http://www.yso.fi/onto/yso/p11867|http://www.yso.fi/onto/yso/p8156en
dc.contributor.authorAlabi, Rasheed Omobolaji
dc.contributor.authorMäkitie, Antti A.
dc.contributor.authorPirinen, Matti
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorLeivo, Ilmo
dc.contributor.authorAlmangush, Alhadi
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-11-30T11:43:52Z
dc.date.accessioned2025-06-25T12:46:12Z
dc.date.available2022-01-01T01:00:20Z
dc.date.issued2021-01-01
dc.description.abstractBackground: The prediction of overall survival in tongue cancer is important for planning of personalized care and patient counselling. Objectives: This study compares the performance of a nomogram with a machine learning model to predict overall survival in tongue cancer. The nomogram and machine learning model were built using a large data set from the Surveillance, Epidemiology, and End Results (SEER) program database. The comparison is necessary to provide the clinicians with a comprehensive, practical, and most accurate assistive system to predict overall survival of this patient population. Methods: The data set used included the records of 7596 tongue cancer patients. The considered machine learning algorithms were logistic regression, support vector machine, Bayes point machine, boosted decision tree, decision forest, and decision jungle. These algorithms were mainly evaluated in terms of the areas under the receiver-operating characteristic (ROC) curve (AUC) and accuracy values. The performance of the algorithm that produced the best result was compared with a nomogram to predict overall survival in tongue cancer patients. Results: The boosted decision-tree algorithm outperformed other algorithms. When compared with a nomogram using external validation data, the boosted decision tree produced an accuracy of 88.7% while the nomogram showed an accuracy of 60.4%. In addition, it was found that age of patient, T stage, radiotherapy, and the surgical resection were the most prominent features with significant influence on the machine learning model’s performance to predict overall survival. Conclusion: The machine learning model provides more personalized and reliable prognostic information of tongue cancer than the nomogram. However, the level of transparency offered by the nomogram in estimating patients’ outcomes seems more confident and strengthened the principle of shared decision making between the patient and clinician. Therefore, a combination of a nomogram – machine learning (NomoML) predictive model may help to improve care, provides information to patients, and facilitates the clinicians in making tongue cancer management-related decisions.-
dc.description.notification©2020 Elsevier Ltd. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2022-01-01
dc.embargo.terms2022-01-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent26-
dc.identifier.olddbid13032
dc.identifier.oldhandle10024/11610
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/878
dc.identifier.urnURN:NBN:fi-fe2020113098663-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijmedinf.2020.104313-
dc.relation.ispartofjournalInternational journal of medical informatics-
dc.relation.issn1872-8243-
dc.relation.issn1386-5056-
dc.relation.issueJanuary 2021-
dc.relation.urlhttps://doi.org/10.1016/j.ijmedinf.2020.104313-
dc.relation.volume145-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11610
dc.subjectnomogram-
dc.subjectpredict overall survival-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysocancerous diseases-
dc.subject.ysoforecasts-
dc.subject.ysomachine learning-
dc.subject.ysotongue cancer-
dc.subject.ysocancer treatments-
dc.subject.ysodiagnostics-
dc.subject.ysorenal cancer-
dc.subject.ysosymptoms-
dc.subject.ysocoping-
dc.subject.ysoconstruction machines-
dc.titleComparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alabi_Mäkitie_Pirinen_Elmusrati_Leivo_Almangush_2021.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat