Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lebesgue type decompositions for nonnegative forms

Hassi, Seppo; Sebestyén, Zoltán; de Snoo, Henk (2009-12-15)

 
Katso/Avaa
Artikkeli (295.5Kb)
Lataukset: 

URI
https://doi.org/10.1016/j.jfa.2009.09.014

Hassi, Seppo
Sebestyén, Zoltán
de Snoo, Henk
Elsevier Academic Press
15.12.2009
doi:10.1016/j.jfa.2009.09.014
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020102185821

Kuvaus

© Elsevier 2009. Articles published under an Elsevier user license are protected by copyright. Users may access, download, copy, translate, text and data mine (but may not redistribute, display or adapt) the articles for non-commercial purposes.
Tiivistelmä
A nonnegative form t on a complex linear space is decomposed with respect to another nonnegative form w: it has a Lebesgue decomposition into an almost dominated form and a singular form. The part which is almost dominated is the largest form majorized by t which is almost dominated by w. The construction of the Lebesgue decomposition only involves notions from the complex linear space. An important ingredient in the construction is the new concept of the parallel sum of forms. By means of Hilbert space techniques the almost dominated and the singular parts are identified with the regular and a singular parts of the form. This decomposition addresses a problem posed by B. Simon. The Lebesgue decomposition of a pair of finite measures corresponds to the present decomposition of the forms which are induced by the measures. T. Ando's decomposition of a nonnegative bounded linear operator in a Hilbert space with respect to another nonnegative bounded linear operator is a consequence. It is shown that the decomposition of positive definite kernels involving families of forms also belongs to the present context. The Lebesgue decomposition is an example of a Lebesgue type decomposition, i.e., any decomposition into an almost dominated and a singular part. There is a necessary and sufficient condition for a Lebesgue type decomposition to be unique. This condition is inspired by the work of Ando concerning uniqueness questions.
Kokoelmat
  • Artikkelit [1554]
https://osuva.uwasa.fi
Ota yhteyttä | Lähetä palautetta | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Lähetä palautetta | Tietosuoja | Saavutettavuusseloste