Lebesgue type decompositions for nonnegative forms

annif.suggestionsfunction analysis|functional analysis|Hilbert space|mathematics|mathematical analysis|operators|musical form|integral calculus|radon|singular|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6850|http://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p19485|http://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p12941|http://www.yso.fi/onto/yso/p7857|http://www.yso.fi/onto/yso/p6953|http://www.yso.fi/onto/yso/p13390en
dc.contributor.authorHassi, Seppo
dc.contributor.authorSebestyén, Zoltán
dc.contributor.authorde Snoo, Henk
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-10-21T07:46:19Z
dc.date.accessioned2025-06-25T12:45:28Z
dc.date.available2020-10-21T07:46:19Z
dc.date.issued2009-12-15
dc.description.abstractA nonnegative form t on a complex linear space is decomposed with respect to another nonnegative form w: it has a Lebesgue decomposition into an almost dominated form and a singular form. The part which is almost dominated is the largest form majorized by t which is almost dominated by w. The construction of the Lebesgue decomposition only involves notions from the complex linear space. An important ingredient in the construction is the new concept of the parallel sum of forms. By means of Hilbert space techniques the almost dominated and the singular parts are identified with the regular and a singular parts of the form. This decomposition addresses a problem posed by B. Simon. The Lebesgue decomposition of a pair of finite measures corresponds to the present decomposition of the forms which are induced by the measures. T. Ando's decomposition of a nonnegative bounded linear operator in a Hilbert space with respect to another nonnegative bounded linear operator is a consequence. It is shown that the decomposition of positive definite kernels involving families of forms also belongs to the present context. The Lebesgue decomposition is an example of a Lebesgue type decomposition, i.e., any decomposition into an almost dominated and a singular part. There is a necessary and sufficient condition for a Lebesgue type decomposition to be unique. This condition is inspired by the work of Ando concerning uniqueness questions.-
dc.description.notification© Elsevier 2009. Articles published under an Elsevier user license are protected by copyright. Users may access, download, copy, translate, text and data mine (but may not redistribute, display or adapt) the articles for non-commercial purposes.-
dc.format.bitstreamtrue
dc.format.extent37-
dc.format.pagerange3858-3894-
dc.identifier.olddbid12762
dc.identifier.oldhandle10024/11483
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/854
dc.identifier.urnURN:NBN:fi-fe2020102185821-
dc.language.isoeng-
dc.publisherElsevier-
dc.publisherAcademic Press-
dc.relation.doi10.1016/j.jfa.2009.09.014-
dc.relation.ispartofjournalJournal of Functional Analysis-
dc.relation.issn0022-1236-
dc.relation.issue12-
dc.relation.urlhttps://doi.org/10.1016/j.jfa.2009.09.014-
dc.relation.volume257-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11483
dc.subject.olddisciplineMatematiikka-
dc.titleLebesgue type decompositions for nonnegative forms-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Hassi_Sebestyen_deSnoo_2009.pdf
Size:
295.59 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat