Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
  •   Etusivu
  • OSUVA
  • Artikkelit
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decentralised demand response market model based on reinforcement learning

Shafie-Khah, Miadreza; Talari, Saber; Wang, Fei; Catalão, João P.S. (2020-09-16)

 
Katso/Avaa
Artikkeli (1.469Mb)
Lataukset: 

URI
https://doi.org/10.1049/iet-stg.2019.0129

Shafie-Khah, Miadreza
Talari, Saber
Wang, Fei
Catalão, João P.S.
The Institution of Engineering and Technology
16.09.2020
doi:10.1049/iet-stg.2019.0129
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020100678191

Kuvaus

vertaisarvioitu
© 2020 The Institution of Engineering and Technology. This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)
Tiivistelmä
A new decentralised demand response (DR) model relying on bi-directional communications is developed in this study. In this model, each user is considered as an agent that submits its bids according to the consumption urgency and a set of parameters defined by a reinforcement learning algorithm called Q-learning. The bids are sent to a local DR market, which is responsible for communicating all bids to the wholesale market and the system operator (SO), reporting to the customers after determining the local DR market clearing price. From local markets’ viewpoint, the goal is to maximise social welfare. Four DR levels are considered to evaluate the effect of different DR portions in the cost of the electricity purchase. The outcomes are compared with the ones achieved from a centralised approach (aggregation-based model) as well as an uncontrolled method. Numerical studies prove that the proposed decentralised model remarkably drops the electricity cost compare to the uncontrolled method, being nearly as optimal as a centralised approach.
Kokoelmat
  • Artikkelit [2101]
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

TekijäNimekeAsiasanaYksikkö / TiedekuntaOppiaineJulkaisuaikaKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
https://osuva.uwasa.fi
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste