Decentralised demand response market model based on reinforcement learning

annif.suggestionsprices|smart grids|pricing|decentralisation|People's Republic of China|marketing|pharmaceutical sector|purchasing power|algorithms|customers|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p750|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p10773|http://www.yso.fi/onto/yso/p6739|http://www.yso.fi/onto/yso/p104984|http://www.yso.fi/onto/yso/p5878|http://www.yso.fi/onto/yso/p21202|http://www.yso.fi/onto/yso/p11636|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p3294en
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorTalari, Saber
dc.contributor.authorWang, Fei
dc.contributor.authorCatalão, João P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-10-06T12:28:32Z
dc.date.accessioned2025-06-25T12:44:44Z
dc.date.available2020-10-06T12:28:32Z
dc.date.issued2020-09-16
dc.description.abstractA new decentralised demand response (DR) model relying on bi-directional communications is developed in this study. In this model, each user is considered as an agent that submits its bids according to the consumption urgency and a set of parameters defined by a reinforcement learning algorithm called Q-learning. The bids are sent to a local DR market, which is responsible for communicating all bids to the wholesale market and the system operator (SO), reporting to the customers after determining the local DR market clearing price. From local markets’ viewpoint, the goal is to maximise social welfare. Four DR levels are considered to evaluate the effect of different DR portions in the cost of the electricity purchase. The outcomes are compared with the ones achieved from a centralised approach (aggregation-based model) as well as an uncontrolled method. Numerical studies prove that the proposed decentralised model remarkably drops the electricity cost compare to the uncontrolled method, being nearly as optimal as a centralised approach.-
dc.description.notification© 2020 The Institution of Engineering and Technology. This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent9-
dc.format.pagerange1-9-
dc.identifier.olddbid12680
dc.identifier.oldhandle10024/11410
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/828
dc.identifier.urnURN:NBN:fi-fe2020100678191-
dc.language.isoeng-
dc.publisherThe Institution of Engineering and Technology-
dc.relation.doi10.1049/iet-stg.2019.0129-
dc.relation.ispartofjournalIET smart grid-
dc.relation.issn2515-2947-
dc.relation.urlhttps://doi.org/10.1049/iet-stg.2019.0129-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11410
dc.subjectPower engineering computing-
dc.subjectPower system management-
dc.subjectoperation and economics-
dc.subjectKnowledge engineering techniques-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleDecentralised demand response market model based on reinforcement learning-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
IET-STG.2019.0129.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat