Novel Wind Power Station Site Selection Framework Based on Multipolar Fuzzy Schweizer-Sklar Aggregation Operators

annif.suggestionswind energy|fuzzy logic|wind power stations|Pakistan|renewable energy sources|energy production (process industry)|Pythagoreanism|set theory (mathematics)|Riyadh|Lahore|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p7986|http://www.yso.fi/onto/yso/p6952|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p16636|http://www.yso.fi/onto/yso/p18052|http://www.yso.fi/onto/yso/p508405|http://www.yso.fi/onto/yso/p208737en
dc.contributor.authorAli, Ghous
dc.contributor.authorAnwar, Muhammad
dc.contributor.authorAlmutairi, Bander
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorKanwal, Sabeeha
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-05-30T10:15:48Z
dc.date.accessioned2025-06-25T14:04:22Z
dc.date.available2025-05-30T10:15:48Z
dc.date.issued2024-12-13
dc.description.abstractNowadays, wind power stations play a significant role in eco-friendly energy production by efficiently harnessing wind energy to produce electricity. A crucial factor in constructing a wind power station is the site selection process, which identifies ideal locations for wind turbines to optimize energy generation, minimize costs, and reduce environmental impact. This complex decision-making involves multipolar attributes, including technical and environmental categories. An m-polar fuzzy (mPF) set model is an effective tool for addressing such uncertain problems involving multi-dimensional parameters. The main goal of this study is to integrate Schweizer-Sklar operations with mPF information to determine the aggregated results in a more generalized environment. We develop some novel mPF -geometric and mPF -averaging aggregation operators (AgOs), including the mPF Schweizer-Sklar weighted averaging (mPF SSWA), mPF Schweizer-Sklar ordered weighted averaging (mPF SSOWA), mPF Schweizer-Sklar hybrid averaging (mPF SSHA), mPF Schweizer-Sklar weighted geometric (mPF SSWG), mPF Schweizer-Sklar ordered weighted geometric (mPF SSOWG), and mPF Schweizer-Sklar hybrid geometric (mPF SSHG) operators. We support these AgOs by presenting numerical examples and some fundamental properties, like monotonicity, boundedness, idempotency, and commutativity. Further, we propose an algorithm for both mPF SSWA and mPF SSWG operators to minimize uncertainty in various MCDM problems. Next, we investigate a case study of Sindh province in Pakistan (i.e., choosing the best site for a wind power station) by implementing the suggested algorithm. Finally, we compare the developed mPF Schweizer-Sklar AgOs with the preexisting mPF -Yagar, mPF -Dombi, mPF -Aczel-Alsina AgOs, mPF -AHP (Analytical Hierarchy Process), mPF -TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), and mPF -ELECTRE-I (ELimination and Choice Expressing REality)-I methods.-
dc.description.notification©2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent23-
dc.identifier.isbn2169-3536-
dc.identifier.olddbid23909
dc.identifier.oldhandle10024/19641
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3277
dc.identifier.urnURN:ISBN:2169-3536-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2024.3516825-
dc.relation.funderKing Saudi University, Riyadh, Saudi Arabia-
dc.relation.funderTechnical Research Center VTT, Finland-
dc.relation.grantnumberRSPD2025R650-
dc.relation.ispartofjournalIEEE access-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2024.3516825-
dc.relation.volume12-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001385626400001-
dc.source.identifier2-s2.0-85212404846-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19641
dc.subjectm-polar fuzzy sets; Schweizer-Sklar t-norm; aggregation operators; multi-criteria decision-making; wind power station-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysowind power stations-
dc.titleNovel Wind Power Station Site Selection Framework Based on Multipolar Fuzzy Schweizer-Sklar Aggregation Operators-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ali_Anwar_Almutairi_Faheem_Kanwal_2024.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format

Kokoelmat