The Complexity of Data-Driven in Engineer-To-Order Enterprise Supply-Chains
| annif.suggestions | production planning|product development|supply chains|machine learning|modelling (creation related to information)|competitive strength|enterprises|production|manufacturing engineering|data mining|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p12587|http://www.yso.fi/onto/yso/p2721|http://www.yso.fi/onto/yso/p19415|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p9189|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p944|http://www.yso.fi/onto/yso/p22012|http://www.yso.fi/onto/yso/p5520 | en |
| dc.contributor.author | Addo-Tenkorang, Richard | |
| dc.contributor.author | Helo, Petri | |
| dc.contributor.author | Sivula, Ari | |
| dc.contributor.author | Gwangwava, Norman | |
| dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
| dc.contributor.editor | Batako, Andre | |
| dc.contributor.editor | Burduk, Anna | |
| dc.contributor.editor | Karyono, Kanisius | |
| dc.contributor.editor | Chen, Xun | |
| dc.contributor.editor | Wyczółkowski, Ryszard | |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-0501-2727 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2022-04-28T04:47:16Z | |
| dc.date.accessioned | 2025-06-25T13:25:41Z | |
| dc.date.available | 2023-04-20T22:00:13Z | |
| dc.date.issued | 2022-04-20 | |
| dc.description.abstract | The complexity of data-driven engineer-to-order manufacturing enterprise supply-chains for effective and efficient decision making has received a lot of attention both within the original equipment manufacturing industrial research and development circle and supply-chains operations research and management circles. However, despite these complexities, most of the published supply-chains research in operations research and management have neglected the ‘engineer-to-order perspective within the original equipment manufacturing supply-chains sector. This research employs a comprehensive study of complex supply-chains management activities to attempt to propose feasible and measurable essential propositions and/or framework for “best practices” in data-driven engineer-to-order supply-chains. There seems to be no specific comprehensive study on the complexity of data-driven engineer-to-order supply-chains within the original equipment manufacturing sectors for complex products such as the aerospace, marine, and/or power plant industries, etc. However, because this area of complexity of data-driven engineer-to-order within enterprise supply-chains have not been much researched or explored; there is an expected challenge of finding enough available literature to draw-on or makes an inference to. Hence, this study will take solace from mostly real-life industrial case(s) and/or activities, etc. Therefore, this paper presents a comprehensive study of the complexity of data-driven engineer-to-order enterprise supply-chains as well as outlining essential propositions and/or framework to enhance effective and efficient resilient complex engineer-to-order supply-chains. This paper will thus, contribute to the development of a more robust and resilient framework when dealing with the complexity of data-driven engineer-to-order enterprise supply-chains. | - |
| dc.description.notification | ©2022 Springer. This is a post-peer-review, pre-copyedit version of an article published in Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering: Progress in Application of Intelligent Methods and Systems in Production Engineering. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-90532-3_39 | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.embargo.lift | 2023-04-20 | |
| dc.embargo.terms | 2023-04-20 | |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 16 | - |
| dc.format.pagerange | 517-532 | - |
| dc.identifier.isbn | 978-3-030-90532-3 | - |
| dc.identifier.olddbid | 15985 | |
| dc.identifier.oldhandle | 10024/13896 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2086 | |
| dc.identifier.urn | URN:NBN:fi-fe2022042831062 | - |
| dc.language.iso | eng | - |
| dc.publisher | Springer | - |
| dc.relation.conference | Global Congress on Manufacturing and Management | - |
| dc.relation.doi | 10.1007/978-3-030-90532-3_39 | - |
| dc.relation.isbn | 978-3-030-90531-6 | - |
| dc.relation.ispartof | Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering : Progress in Application of Intelligent Methods and Systems in Production Engineering | - |
| dc.relation.ispartofseries | Lecture Notes in Networks and Systems | - |
| dc.relation.issn | 2367-3389 | - |
| dc.relation.issn | 2367-3370 | - |
| dc.relation.numberinseries | 335 | - |
| dc.relation.url | https://doi.org/10.1007/978-3-030-90532-3_39 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/13896 | |
| dc.subject | Bigdata | - |
| dc.subject | Complexity | - |
| dc.subject | Engineer-to-Order | - |
| dc.subject | Original-equipment-manufacturer | - |
| dc.subject.discipline | fi=Tuotantotalous|en=Industrial Management| | - |
| dc.subject.yso | supply chains | - |
| dc.title | The Complexity of Data-Driven in Engineer-To-Order Enterprise Supply-Chains | - |
| dc.type.okm | fi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation| | - |
| dc.type.publication | article | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Addo-Tenkorang_Helo_Sivula_Gwangwava_2022.pdf
- Size:
- 1.98 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
