The Complexity of Data-Driven in Engineer-To-Order Enterprise Supply-Chains

annif.suggestionsproduction planning|product development|supply chains|machine learning|modelling (creation related to information)|competitive strength|enterprises|production|manufacturing engineering|data mining|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p12587|http://www.yso.fi/onto/yso/p2721|http://www.yso.fi/onto/yso/p19415|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p9189|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p944|http://www.yso.fi/onto/yso/p22012|http://www.yso.fi/onto/yso/p5520en
dc.contributor.authorAddo-Tenkorang, Richard
dc.contributor.authorHelo, Petri
dc.contributor.authorSivula, Ari
dc.contributor.authorGwangwava, Norman
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.editorBatako, Andre
dc.contributor.editorBurduk, Anna
dc.contributor.editorKaryono, Kanisius
dc.contributor.editorChen, Xun
dc.contributor.editorWyczółkowski, Ryszard
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0501-2727-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-04-28T04:47:16Z
dc.date.accessioned2025-06-25T13:25:41Z
dc.date.available2023-04-20T22:00:13Z
dc.date.issued2022-04-20
dc.description.abstractThe complexity of data-driven engineer-to-order manufacturing enterprise supply-chains for effective and efficient decision making has received a lot of attention both within the original equipment manufacturing industrial research and development circle and supply-chains operations research and management circles. However, despite these complexities, most of the published supply-chains research in operations research and management have neglected the ‘engineer-to-order perspective within the original equipment manufacturing supply-chains sector. This research employs a comprehensive study of complex supply-chains management activities to attempt to propose feasible and measurable essential propositions and/or framework for “best practices” in data-driven engineer-to-order supply-chains. There seems to be no specific comprehensive study on the complexity of data-driven engineer-to-order supply-chains within the original equipment manufacturing sectors for complex products such as the aerospace, marine, and/or power plant industries, etc. However, because this area of complexity of data-driven engineer-to-order within enterprise supply-chains have not been much researched or explored; there is an expected challenge of finding enough available literature to draw-on or makes an inference to. Hence, this study will take solace from mostly real-life industrial case(s) and/or activities, etc. Therefore, this paper presents a comprehensive study of the complexity of data-driven engineer-to-order enterprise supply-chains as well as outlining essential propositions and/or framework to enhance effective and efficient resilient complex engineer-to-order supply-chains. This paper will thus, contribute to the development of a more robust and resilient framework when dealing with the complexity of data-driven engineer-to-order enterprise supply-chains.-
dc.description.notification©2022 Springer. This is a post-peer-review, pre-copyedit version of an article published in Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering: Progress in Application of Intelligent Methods and Systems in Production Engineering. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-90532-3_39-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-04-20
dc.embargo.terms2023-04-20
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent16-
dc.format.pagerange517-532-
dc.identifier.isbn978-3-030-90532-3-
dc.identifier.olddbid15985
dc.identifier.oldhandle10024/13896
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2086
dc.identifier.urnURN:NBN:fi-fe2022042831062-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.conferenceGlobal Congress on Manufacturing and Management-
dc.relation.doi10.1007/978-3-030-90532-3_39-
dc.relation.isbn978-3-030-90531-6-
dc.relation.ispartofAdvances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering : Progress in Application of Intelligent Methods and Systems in Production Engineering-
dc.relation.ispartofseriesLecture Notes in Networks and Systems-
dc.relation.issn2367-3389-
dc.relation.issn2367-3370-
dc.relation.numberinseries335-
dc.relation.urlhttps://doi.org/10.1007/978-3-030-90532-3_39-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13896
dc.subjectBigdata-
dc.subjectComplexity-
dc.subjectEngineer-to-Order-
dc.subjectOriginal-equipment-manufacturer-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.subject.ysosupply chains-
dc.titleThe Complexity of Data-Driven in Engineer-To-Order Enterprise Supply-Chains-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Addo-Tenkorang_Helo_Sivula_Gwangwava_2022.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat