A Review on Application of Artificial Intelligence Techniques in Microgrids

annif.suggestionselectrical power networks|microgrids|artificial intelligence|energy control|distribution of electricity|machine learning|smart grids|renewable energy sources|energy production (process industry)|networks (systems)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p2388|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p5569en
dc.contributor.authorMohammadi, Ebrahim
dc.contributor.authorAlizadeh, Mojtaba
dc.contributor.authorAsgarimoghaddam, Mohsen
dc.contributor.authorWang, Xiaoyu
dc.contributor.authorSimões, M. Godoy
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4124-061X-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-08-24T12:20:17Z
dc.date.accessioned2025-06-25T13:32:53Z
dc.date.available2022-08-24T12:20:17Z
dc.date.issued2022-08-15
dc.description.abstractA microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.-
dc.description.notification©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid16762
dc.identifier.oldhandle10024/14506
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2302
dc.identifier.urnURN:NBN:fi-fe2022082456165-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/JESTIE.2022.3198504-
dc.relation.ispartofjournalIEEE Journal of Emerging and Selected Topics in Industrial Electronics-
dc.relation.issn2687-9743-
dc.relation.issn2687-9735-
dc.relation.urlhttps://doi.org/10.1109/JESTIE.2022.3198504-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14506
dc.subjectcontrol-
dc.subjectcyber security-
dc.subjectenergy management-
dc.subjectload forecasting-
dc.subjectmicrogrid-
dc.subjectprotection-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomicrogrids-
dc.subject.ysoartificial intelligence-
dc.subject.ysomachine learning-
dc.titleA Review on Application of Artificial Intelligence Techniques in Microgrids-
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|en=A2 Peer-reviewed review article|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Mohammadi_Alizadeh_Asgarimoghaddam_Wang_Simões_2022.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat