Using Machine Learning for In-Out decision accuracy for venue owner definable services

annif.suggestionsmachine learning|learning|indoor positioning|information and communications technology|United States of America|noise|algorithmics|algorithms|data|modelling (creation related to information)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2945|http://www.yso.fi/onto/yso/p27620|http://www.yso.fi/onto/yso/p20743|http://www.yso.fi/onto/yso/p105078|http://www.yso.fi/onto/yso/p1718|http://www.yso.fi/onto/yso/p3365|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p27250|http://www.yso.fi/onto/yso/p3533en
dc.contributor.authorKhan, Wiqar
dc.contributor.authorKeskinen, Matti
dc.contributor.authorRaza, Asif
dc.contributor.authorKuusniemi, Heidi
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyDigital Economy-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-04-16T09:33:57Z
dc.date.accessioned2025-06-25T12:57:48Z
dc.date.available2023-04-02T22:00:17Z
dc.date.issued2021-04-02
dc.description.abstractPresence confirmation for being inside certain venue becomes matter of more importance when venue owner might have option to restrict or to provide value added contents for the user per its presence in a given venue during a given time window. In this paper, machine learning is applied to find the confidence of decision about a User Equipment (UE) presence inside a designated venue based on the accumulated data set used for learning. 20 UEs are used such that some are placed inside venue and other outside to collect data set to be used for ML algorithms. The outside locations are the possible human movement areas around the venue. The UEs works as reference data collection sources both from outside and inside. The received mobile network info by each UE is collected over extended time. Data is labeled based on the actual positions of the UEs. Using Python, Machine Learning is applied with very encouraging results to conclude the presence confirmation inside venue or the other way around. Hyper parameter tuning is applied for kNN ML algorithm.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-04-02
dc.embargo.terms2023-04-02
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.isbn978-1-7281-6535-6-
dc.identifier.olddbid14037
dc.identifier.oldhandle10024/12424
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1234
dc.identifier.urnURN:NBN:fi-fe2021041610768-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Communications, Signal Processing, and their Applications (ICCSPA)-
dc.relation.doi10.1109/ICCSPA49915.2021.9385759-
dc.relation.isbn978-1-7281-6536-3-
dc.relation.ispartof2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA)-
dc.relation.urlhttps://doi.org/10.1109/ICCSPA49915.2021.9385759-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12424
dc.subjectAndroid-
dc.subjectLTE-
dc.subjectMachine Learning algorithms-
dc.subjectPython-
dc.subjectRSRP-
dc.titleUsing Machine Learning for In-Out decision accuracy for venue owner definable services-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Khan_Keskinen_Raza_Kuusniemi_Elmusrati_2021.pdf
Size:
439.93 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat