An Extreme Learning Machine Model for Venue Presence Detection

annif.suggestionsmachine learning|neural networks (information technology)|locationing|satellite navigation|signal analysis|indoor positioning|mobile communication networks|paper machines|elm|signal processing|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p6230|http://www.yso.fi/onto/yso/p19374|http://www.yso.fi/onto/yso/p26805|http://www.yso.fi/onto/yso/p27620|http://www.yso.fi/onto/yso/p12758|http://www.yso.fi/onto/yso/p10598|http://www.yso.fi/onto/yso/p8237|http://www.yso.fi/onto/yso/p12266en
dc.contributor.authorKhan, Wiqar
dc.contributor.authorRaza, Asif
dc.contributor.authorKuusniemi, Heidi
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorEspinosa-Leal, Leonardo
dc.contributor.departmentDigital Economy-
dc.contributor.editorBjörk, Kaj-Mikael
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-7551-9531-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-04-26T12:05:15Z
dc.date.accessioned2025-06-25T13:10:36Z
dc.date.available2024-01-19T23:00:07Z
dc.date.issued2023-01-19
dc.description.abstractValue-added services allocation or denial in a particular venue for a given user is of high significance. It will get more prominent as we move to 5G and 6G networks’ roll out, as we will get other means to have better aids. In this paper, Extreme Learning Machines (ELM) model performance is compared with Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF) models for venue presence detection. The input data is collected from the number of UEs (User Equipment) simultaneously placed inside and outside a venue and kept for longer duration. UEs logs essential data such as received signal reference power for serving cells and neighbor candidate cells, along with other network information. Our findings show that ELM model performs above 95% accuracy for a count of zero, one, and two neighbors. The results get better as we consider the collected data from more neighbors’ cells in our ELM computation.-
dc.description.notification©2023 Springer. This is a post-peer-review, pre-copyedit version of an article published in Proceedings of ELM 2021: Theory, Algorithms and Applications. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-21678-7-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-01-19
dc.embargo.terms2024-01-19
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent8-
dc.format.pagerange144–151-
dc.identifier.isbn978-3-031-21678-7-
dc.identifier.olddbid18178
dc.identifier.oldhandle10024/15517
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1629
dc.identifier.urnURN:NBN:fi-fe2023042638947-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.conferenceInternational Conference on Extreme Learning Machine-
dc.relation.doi10.1007/978-3-031-21678-7_14-
dc.relation.isbn978-3-031-21677-0-
dc.relation.ispartofProceedings of ELM 2021 : Theory, Algorithms and Applications-
dc.relation.ispartofseriesProceedings in adaptation, learning and optimization-
dc.relation.issn2363-6092-
dc.relation.issn2363-6084-
dc.relation.numberinseries16-
dc.relation.urlhttps://doi.org/10.1007/978-3-031-21678-7_14-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15517
dc.subjectVenue presence detection-
dc.subjectEquipment logs-
dc.subjectExtreme learning machines-
dc.subjectLTE-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.titleAn Extreme Learning Machine Model for Venue Presence Detection-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationbookPart-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Khan_Raza_Kuusniemi_Elmusrati_Espinosa-Leal_2023.pdf
Size:
409.05 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat