Machine Learning Methods for Emissions Prediction in Combustion Engines with Multiple Cylinders

annif.suggestionsemissions|diesel engines|combustion engines|carbon dioxide|measurement|cylinders|machine learning|combustion (active)|nitrogen oxides|motors and engines|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p437|http://www.yso.fi/onto/yso/p17227|http://www.yso.fi/onto/yso/p4770|http://www.yso.fi/onto/yso/p4728|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p13971|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3191|http://www.yso.fi/onto/yso/p2802|http://www.yso.fi/onto/yso/p2708en
dc.contributor.authorNguyen Khac, Hoang
dc.contributor.authorModabberian, Amin
dc.contributor.authorZenger, Kai
dc.contributor.authorNiskanen, Kalle
dc.contributor.authorWest, Anton
dc.contributor.authorZhang, Yejun
dc.contributor.authorSilvola, Elias
dc.contributor.authorLendormy, Eric
dc.contributor.authorStorm, Xiaoguo
dc.contributor.authorMikulski, Maciej
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7242-8266-
dc.contributor.orcidhttps://orcid.org/0000-0001-8903-4693-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-03-03T17:31:55Z
dc.date.accessioned2025-06-25T13:58:02Z
dc.date.available2025-03-03T17:31:55Z
dc.date.issued2023
dc.description.abstractThe increasing demand of lowering the emissions of the combustion engines has led to the development of more complex engine systems. This paper presents artificial neural network (ANN) based models for estimating nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from in-cylinder pressure of a maritime diesel engine. The architecture of the models is that of Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) network. The data utilized to train and test the models are obtained from a four-cylinder marine engine. The inputs of the models are chosen as the first principal components of the in-cylinder pressure and engine parameters with highest correlation to aforementioned greenhouse gases. Generalization is performed on the models during the training to avoid overfitting. The estimation result of each model is then compared. Additionally, contribution of each cylinder to the production of emissions is investigated. Results indicate that MLP has a higher accuracy in estimating both NOx and CO2 compared to RBF network. The emission levels of each cylinder for both NOx and CO2 are mostly even due to the nature of the conventional diesel engine.-
dc.description.notification© 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent7-
dc.format.pagerange3072-3078-
dc.identifier.olddbid22615
dc.identifier.oldhandle10024/18815
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3089
dc.identifier.urnURN:NBN:fi-fe2025030315307-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.conferenceIFAC World Congress-
dc.relation.doi10.1016/j.ifacol.2023.10.1437-
dc.relation.funderBusiness Finland-
dc.relation.ispartofjournalIFAC-PapersOnLine-
dc.relation.issn2405-8963-
dc.relation.issn2405-8971-
dc.relation.issue2-
dc.relation.urlhttps://doi.org/10.1016/j.ifacol.2023.10.1437-
dc.relation.volume56-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierScopus:85184960018-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18815
dc.subjectgreen house gases-
dc.subjectvirtual sensor-
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|-
dc.subject.ysocombustion engines-
dc.subject.ysocylinders-
dc.subject.ysomachine learning-
dc.titleMachine Learning Methods for Emissions Prediction in Combustion Engines with Multiple Cylinders-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ngyuen_Modabberian_Zenger_Niskanen_West_Zhang_Silvola_Lendormy_Storm_Mikulski_2023.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

Kokoelmat