Will they take this offer? A machine learning price elasticity model for predicting upselling acceptance of premium airline seating

annif.suggestionscustomers|pricing|marketing|prices|machine learning|customer relationship management|customer orientation|airlines|marketing research|customer experience|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3294|http://www.yso.fi/onto/yso/p10773|http://www.yso.fi/onto/yso/p5878|http://www.yso.fi/onto/yso/p750|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p8530|http://www.yso.fi/onto/yso/p7613|http://www.yso.fi/onto/yso/p15467|http://www.yso.fi/onto/yso/p13560|http://www.yso.fi/onto/yso/p24882en
dc.contributor.authorThirumuruganathan, Saravanan
dc.contributor.authorEmadi, Noora Al
dc.contributor.authorJung, Soon-gyo
dc.contributor.authorSalminen, Joni
dc.contributor.authorRobillos, Dianne Ramirez
dc.contributor.authorJansen, Bernard J.
dc.contributor.facultyfi=Markkinoinnin ja viestinnän yksikkö|en=School of Marketing and Communication|-
dc.contributor.orcidhttps://orcid.org/0000-0003-3230-0561-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-04-19T06:44:23Z
dc.date.accessioned2025-06-25T12:32:52Z
dc.date.available2023-04-19T06:44:23Z
dc.date.issued2023-04
dc.description.abstractEmploying customer information from one of the world's largest airline companies, we develop a price elasticity model (PREM) using machine learning to identify customers likely to purchase an upgrade offer from economy to premium class and predict a customer's acceptable price range. A simulation of 64.3 million flight bookings and 14.1 million email offers over three years mirroring actual data indicates that PREM implementation results in approximately 1.12 million (7.94%) fewer non-relevant customer email messages, a predicted increase of 72,200 (37.2%) offers accepted, and an estimated $72.2 million (37.2%) of increased revenue. Our results illustrate the potential of automated pricing information and targeting marketing messages for upselling acceptance. We also identified three customer segments: (1) Never Upgrades are those who never take the upgrade offer, (2) Upgrade Lovers are those who generally upgrade, and (3) Upgrade Lover Lookalikes have no historical record but fit the profile of those that tend to upgrade. We discuss the implications for airline companies and related travel and tourism industries.-
dc.description.notification© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid18087
dc.identifier.oldhandle10024/15469
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/426
dc.identifier.urnURN:NBN:fi-fe2023041937558-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.im.2023.103759-
dc.relation.ispartofjournalInformation & Management-
dc.relation.issn1872-7530-
dc.relation.issn0378-7206-
dc.relation.issue3-
dc.relation.urlhttps://doi.org/10.1016/j.im.2023.103759-
dc.relation.volume60-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85147259386-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15469
dc.subjectUpselling-
dc.subjectPrice elasticity-
dc.subjectRecommender systems-
dc.subjectKnowledge engineering-
dc.subjectIntelligent systems-
dc.subject.disciplinefi=Markkinointi|en=Marketing|-
dc.subject.ysomachine learning-
dc.titleWill they take this offer? A machine learning price elasticity model for predicting upselling acceptance of premium airline seating-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Thirumuruganathan_Emadi_Jung_Salminen_Robillos_Jansen_2023.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat