Unitary Boundary Pairs for Isometric Operators in Pontryagin Spaces and Generalized Coresolvents

annif.suggestionsoperators|mathematics|Hilbert space|functional analysis|function analysis|concepts (notions)|function spaces|complex analysis|differential equations|mathematical theories|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p6850|http://www.yso.fi/onto/yso/p2267|http://www.yso.fi/onto/yso/p38890|http://www.yso.fi/onto/yso/p18494|http://www.yso.fi/onto/yso/p3552|http://www.yso.fi/onto/yso/p19922en
dc.contributor.authorBaidiuk, D.
dc.contributor.authorDerkach, V.
dc.contributor.authorHassi, S.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-0102-1087-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-28T11:36:11Z
dc.date.accessioned2025-06-25T13:27:38Z
dc.date.available2022-03-28T11:36:11Z
dc.date.issued2021-02-01
dc.description.abstractAn isometric operator V in a Pontryagin space H is called standard, if its domain and the range are nondegenerate subspaces in H. A description of coresolvents for standard isometric operators is known and basic underlying concepts that appear in the literature are unitary colligations and characteristic functions. In the present paper generalized coresolvents of non-standard Pontryagin space isometric operators are described. The methods used in this paper rely on a new general notion of boundary pairs introduced for isometric operators in a Pontryagin space setting. Even in the Hilbert space case this notion generalizes the earlier concept of boundary triples for isometric operators and offers an alternative approach to study operator valued Schur functions without any additional invertibility requirements appearing in the ordinary boundary triple approach.-
dc.description.notification© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent52-
dc.identifier.olddbid15716
dc.identifier.oldhandle10024/13730
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2140
dc.identifier.urnURN:NBN:fi-fe2022032825654-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.doi10.1007/s11785-020-01073-4-
dc.relation.funderMinistry of Education and Science of Ukraine-
dc.relation.funderDeutsche Forschungsgemeinschaft-
dc.relation.funderSuomen Akatemia-
dc.relation.funderProjekt DEAL-
dc.relation.grantnumber0118U002060-
dc.relation.grantnumber0118U003138-
dc.relation.grantnumberTR 903/22-1-
dc.relation.grantnumber310489-
dc.relation.ispartofjournalComplex Analysis and Operator Theory-
dc.relation.issn1661-8262-
dc.relation.issn1661-8254-
dc.relation.issue2-
dc.relation.urlhttps://doi.org/10.1007/s11785-020-01073-4-
dc.relation.volume15-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000613737300001-
dc.source.identifierScopus: 85100242070-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13730
dc.subjectBoundary pair-
dc.subjectboundary triple-
dc.subjectCharacteristic function-
dc.subjectGeneralized coresolvent-
dc.subjectIsometric operator-
dc.subjectPontryagin space-
dc.subjectWeyl function-
dc.subject.disciplinefi=Matematiikka|en=Mathematics|-
dc.titleUnitary Boundary Pairs for Isometric Operators in Pontryagin Spaces and Generalized Coresolvents-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Baidiuk_Derkach_Hassi_2021 .pdf
Size:
459.83 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat