Unitary Boundary Pairs for Isometric Operators in Pontryagin Spaces and Generalized Coresolvents
| annif.suggestions | operators|mathematics|Hilbert space|functional analysis|function analysis|concepts (notions)|function spaces|complex analysis|differential equations|mathematical theories|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p15714|http://www.yso.fi/onto/yso/p3160|http://www.yso.fi/onto/yso/p27794|http://www.yso.fi/onto/yso/p17780|http://www.yso.fi/onto/yso/p6850|http://www.yso.fi/onto/yso/p2267|http://www.yso.fi/onto/yso/p38890|http://www.yso.fi/onto/yso/p18494|http://www.yso.fi/onto/yso/p3552|http://www.yso.fi/onto/yso/p19922 | en |
| dc.contributor.author | Baidiuk, D. | |
| dc.contributor.author | Derkach, V. | |
| dc.contributor.author | Hassi, S. | |
| dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0002-0102-1087 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2022-03-28T11:36:11Z | |
| dc.date.accessioned | 2025-06-25T13:27:38Z | |
| dc.date.available | 2022-03-28T11:36:11Z | |
| dc.date.issued | 2021-02-01 | |
| dc.description.abstract | An isometric operator V in a Pontryagin space H is called standard, if its domain and the range are nondegenerate subspaces in H. A description of coresolvents for standard isometric operators is known and basic underlying concepts that appear in the literature are unitary colligations and characteristic functions. In the present paper generalized coresolvents of non-standard Pontryagin space isometric operators are described. The methods used in this paper rely on a new general notion of boundary pairs introduced for isometric operators in a Pontryagin space setting. Even in the Hilbert space case this notion generalizes the earlier concept of boundary triples for isometric operators and offers an alternative approach to study operator valued Schur functions without any additional invertibility requirements appearing in the ordinary boundary triple approach. | - |
| dc.description.notification | © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 52 | - |
| dc.identifier.olddbid | 15716 | |
| dc.identifier.oldhandle | 10024/13730 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2140 | |
| dc.identifier.urn | URN:NBN:fi-fe2022032825654 | - |
| dc.language.iso | eng | - |
| dc.publisher | Springer | - |
| dc.relation.doi | 10.1007/s11785-020-01073-4 | - |
| dc.relation.funder | Ministry of Education and Science of Ukraine | - |
| dc.relation.funder | Deutsche Forschungsgemeinschaft | - |
| dc.relation.funder | Suomen Akatemia | - |
| dc.relation.funder | Projekt DEAL | - |
| dc.relation.grantnumber | 0118U002060 | - |
| dc.relation.grantnumber | 0118U003138 | - |
| dc.relation.grantnumber | TR 903/22-1 | - |
| dc.relation.grantnumber | 310489 | - |
| dc.relation.ispartofjournal | Complex Analysis and Operator Theory | - |
| dc.relation.issn | 1661-8262 | - |
| dc.relation.issn | 1661-8254 | - |
| dc.relation.issue | 2 | - |
| dc.relation.url | https://doi.org/10.1007/s11785-020-01073-4 | - |
| dc.relation.volume | 15 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | WOS:000613737300001 | - |
| dc.source.identifier | Scopus: 85100242070 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/13730 | |
| dc.subject | Boundary pair | - |
| dc.subject | boundary triple | - |
| dc.subject | Characteristic function | - |
| dc.subject | Generalized coresolvent | - |
| dc.subject | Isometric operator | - |
| dc.subject | Pontryagin space | - |
| dc.subject | Weyl function | - |
| dc.subject.discipline | fi=Matematiikka|en=Mathematics| | - |
| dc.title | Unitary Boundary Pairs for Isometric Operators in Pontryagin Spaces and Generalized Coresolvents | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Baidiuk_Derkach_Hassi_2021 .pdf
- Size:
- 459.83 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
