Grounded Ethical AI: A Demonstrative Approach with RAG-Enhanced Agents

dc.contributor.authorde Cerqueira, José Antonio Siqueira
dc.contributor.authorKhan, Ayman Asad
dc.contributor.authorRousi, Rebekah
dc.contributor.authorXi, Nannan
dc.contributor.authorHamari, Juho
dc.contributor.authorKemell, Kai-Kristian
dc.contributor.authorAbrahamsson, Pekka
dc.contributor.editorM., Deekshitha
dc.contributor.editorSantos, Rodrigo
dc.contributor.editorKhanna, Dron
dc.contributor.editorElshan, Edona
dc.contributor.orcidhttps://orcid.org/0000-0001-5771-3528
dc.date.accessioned2026-01-26T14:39:00Z
dc.date.issued2025
dc.description.abstractLarge Language Models (LLMs) have become central in various fields, yet their trustworthiness remains a pressing concern, especially in developing ethically aligned AI-based systems. This paper presents a demonstration of an LLM-based multi-agent system incorporating Retrieval-Augmented Generation (RAG) to support developers in creating AI systems that align with legal and ethical guidelines. Leveraging documents like the EU AI Act, AI HLEG guidelines, and ISO/IEC 42001:2024, the prototype utilizes multiple agents with specialized roles, structured conversations, and debate rounds to enhance both ethical rigor and trustworthiness. Initial evaluations on real-world AI incidents reveal that this system can produce AI solutions adhering to specific ethical requirements, though further refinements are needed for citation accuracy and practical application. This demonstration illustrates the potential of RAG-enhanced LLMs to operationalize AI ethics and regulatory compliance within the development process, highlighting future directions for achieving more reliable and ethically robust AI solutions.en
dc.description.notification© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19690
dc.identifier.urnURN:NBN:fi-fe202601269083
dc.language.isoen
dc.publisherRWTH Aachen
dc.relation.conferenceCompanion Proceedings of the 15th International Conference on Software Business (PhD Retreat, Posters & Demos Track)
dc.relation.funderJane ja Aatos Erkon säätiöfi
dc.relation.funderJane ja Aatos Erkko Foundationen
dc.relation.grantnumber220025
dc.relation.ispartofICSOB-C 2024 Software Business: PhD Retreat and Posters & Demos Track 2024
dc.relation.ispartofjournalCEUR workshop proceedings
dc.relation.issn1613-0073
dc.relation.urlhttps://ceur-ws.org/Vol-3921/demo-paper1.pdf
dc.relation.urlhttps://urn.fi/URN:NBN:fi-fe202601269083
dc.relation.volume3921
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.source.identifier2-s2.0-85218445480
dc.source.identifierf9783d17-42b8-4f03-a031-00c487583339
dc.source.metadataSoleCRIS
dc.subjectAI ethics
dc.subjectAI4SE
dc.subjectLarge Language Models
dc.subjectTrustworthiness
dc.subject.disciplinefi=Viestintätieteet|en=Communication Studies|
dc.titleGrounded Ethical AI: A Demonstrative Approach with RAG-Enhanced Agents
dc.type.okmfi=A4 Vertaisarvioitu artikkeli konferenssijulkaisussa|en=A4 Article in conference proceedings (peer-reviewed)|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
nbnfi-fe202601269083.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format

Kokoelmat