Solar irradiance forecasting using a novel hybrid deep ensemble reinforcement learning algorithm
| annif.suggestions | solar energy|machine learning|neural networks (information technology)|deep learning|artificial intelligence|renewable energy sources|algorithms|forecasts|sun|optimisation|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p5051|http://www.yso.fi/onto/yso/p13477 | en |
| dc.contributor.author | Jalali, Seyed Mohammad Jafar | |
| dc.contributor.author | Ahmadian, Sajad | |
| dc.contributor.author | Nakisa, Bahareh | |
| dc.contributor.author | Khodayar, Mahdi | |
| dc.contributor.author | Khosravi, Abbas | |
| dc.contributor.author | Nahavandi, Saeid | |
| dc.contributor.author | Islam, Syed Mohammed Shamsul | |
| dc.contributor.author | Shafie-khah, Miadreza | |
| dc.contributor.author | Catalão, João P.S. | |
| dc.contributor.department | Vebic | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-1691-5355 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2023-02-23T12:31:22Z | |
| dc.date.accessioned | 2025-06-25T13:28:18Z | |
| dc.date.available | 2024-12-01T23:00:05Z | |
| dc.date.issued | 2022-12-01 | |
| dc.description.abstract | Solar irradiance forecasting is a major priority for the power transmission systems in order to generate and incorporate the performance of massive photovoltaic plants efficiently. As such, prior forecasting techniques that use classical modelling and single deep learning models that undertake feature extraction procedures manually were unable to meet the output demands in specific situations with dynamic variability. Therefore, in this study, we propose an efficient novel hybrid solar irradiance forecasting model based on three steps. In the first step, we employ a powerful variable input selection strategy named as partial mutual information (PMI) to calculate the linear and non-linear correlations of the original solar irradiance data. In the second step, unlike the traditional deep learning models designing their architectures manually, we utilize several deep long short term memory-convolutional neural network (LSTM-CNN) models optimized by a novel modified whale optimization algorithm in order to compute the forecasting results of the solar irradiance datasets. Finally, in the third step, we deploy a deep reinforcement learning strategy for selecting the best subset of the combined deep optimized LSTM-CNN models. Through analysing the forecasting results over two real-world datasets gathered from the USA solar irradiance stations, it can be inferred that our proposed algorithm outperforms other powerful benchmarked algorithms in 1-step, 2-step, 12-step, and 24-step ahead forecasting. | - |
| dc.description.notification | ©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.embargo.lift | 2024-12-01 | |
| dc.embargo.terms | 2024-12-01 | |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 12 | - |
| dc.identifier.olddbid | 17822 | |
| dc.identifier.oldhandle | 10024/15287 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/2161 | |
| dc.identifier.urn | URN:NBN:fi-fe2023022328476 | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier | - |
| dc.relation.doi | 10.1016/j.segan.2022.100903 | - |
| dc.relation.funder | FEDER funds through COMPETE 2020 | - |
| dc.relation.funder | Fundação para a Ciência e a Tecnologia, FCT | - |
| dc.relation.grantnumber | 02/SAICT/2017 | - |
| dc.relation.grantnumber | POCI-01-0145-FEDER-029803 | - |
| dc.relation.ispartofjournal | Sustainable Energy, Grids and Networks | - |
| dc.relation.issn | 2352-4677 | - |
| dc.relation.url | https://doi.org/10.1016/j.segan.2022.100903 | - |
| dc.relation.volume | 32 | - |
| dc.rights | CC BY-NC-ND 4.0 | - |
| dc.source.identifier | WOS:000874787500003 | - |
| dc.source.identifier | Scopus:85136079937 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/15287 | |
| dc.subject | Deep neural networks | - |
| dc.subject | Deep reinforcement learning | - |
| dc.subject | Ensemble strategy | - |
| dc.subject | Evolutionary computation | - |
| dc.subject | Solar irradiance forecasting | - |
| dc.subject.discipline | fi=Sähkötekniikka|en=Electrical Engineering| | - |
| dc.title | Solar irradiance forecasting using a novel hybrid deep ensemble reinforcement learning algorithm | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Jalali_Ahmadian_Nakisa_Khodayar_Khosravi_Nahavandi_Islam_Shafie-khah_Catalao_2022.pdf
- Size:
- 1.23 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
