Deep Machine Learning for Oral Cancer : From Precise Diagnosis to Precision Medicine

annif.suggestionsmachine learning|cancerous diseases|deep learning|diagnostics|oral cancer|squamous cell carcinoma|medicine (science)|diagnosis|forecasts|surgical treatment|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p416|http://www.yso.fi/onto/yso/p16044|http://www.yso.fi/onto/yso/p27078|http://www.yso.fi/onto/yso/p469|http://www.yso.fi/onto/yso/p14134|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p842en
dc.contributor.authorAlabi, Rasheed Omobolaji
dc.contributor.authorAlmangush, Alhadi
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorMäkitie, Antti A.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7655-5924-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-16T10:57:10Z
dc.date.accessioned2025-06-25T13:41:40Z
dc.date.available2023-01-16T10:57:10Z
dc.date.issued2022-01-11
dc.description.abstractOral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide and its incidence is on the rise in many populations. The high incidence rate, late diagnosis, and improper treatment planning still form a significant concern. Diagnosis at an early-stage is important for better prognosis, treatment, and survival. Despite the recent improvement in the understanding of the molecular mechanisms, late diagnosis and approach toward precision medicine for OSCC patients remain a challenge. To enhance precision medicine, deep machine learning technique has been touted to enhance early detection, and consequently to reduce cancer-specific mortality and morbidity. This technique has been reported to have made a significant progress in data extraction and analysis of vital information in medical imaging in recent years. Therefore, it has the potential to assist in the early-stage detection of oral squamous cell carcinoma. Furthermore, automated image analysis can assist pathologists and clinicians to make an informed decision regarding cancer patients. This article discusses the technical knowledge and algorithms of deep learning for OSCC. It examines the application of deep learning technology in cancer detection, image classification, segmentation and synthesis, and treatment planning. Finally, we discuss how this technique can assist in precision medicine and the future perspective of deep learning technology in oral squamous cell carcinoma.-
dc.description.notification© 2022 Alabi, Almangush, Elmusrati and Mäkitie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent11-
dc.identifier.olddbid17592
dc.identifier.oldhandle10024/15064
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2561
dc.identifier.urnURN:NBN:fi-fe202301162954-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.doi10.3389/froh.2021.794248-
dc.relation.funderThe Helsinki University Hospital Research Fund-
dc.relation.funderSigrid Jusélius Foundation-
dc.relation.funderTurku University Hospital Fund-
dc.relation.grantnumberTYH2020232-
dc.relation.ispartofjournalFrontiers in Oral Health-
dc.relation.issn2673-4842-
dc.relation.urlhttps://doi.org/10.3389/froh.2021.794248-
dc.relation.volume2-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15064
dc.subjectprecise surgery-
dc.subjectPrecision Medicine-
dc.subjectprognostication-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysomachine learning-
dc.subject.ysodeep learning-
dc.subject.ysooral cancer-
dc.titleDeep Machine Learning for Oral Cancer : From Precise Diagnosis to Precision Medicine-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alabi_Almangush_Elmusrati_Mäkitie_2022.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat