An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer

annif.suggestionscancerous diseases|machine learning|forecasts|papillomaviruses|squamous cell carcinoma|surgical treatment|medicine (science)|artificial intelligence|radiotherapy|oropharyngeal neoplasms|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p11689|http://www.yso.fi/onto/yso/p27078|http://www.yso.fi/onto/yso/p842|http://www.yso.fi/onto/yso/p469|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p15892|http://www.yso.fi/onto/yso/p39084en
dc.contributor.authorAlabi, Rasheed Omobolaji
dc.contributor.authorAlmangush, Alhadi
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorLeivo, Ilmo
dc.contributor.authorMäkitie, Antti A.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7655-5924-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-04T14:07:59Z
dc.date.accessioned2025-06-25T13:41:50Z
dc.date.available2023-01-04T14:07:59Z
dc.date.issued2022-10-13
dc.description.abstractBackground The optimal management of oropharyngeal squamous cell carcinoma (OPSCC) includes both surgical and non-surgical, that is, (chemo)radiotherapy treatment options and their combinations. These approaches carry a risk of specific treatment-related side effects. HPV-positive OPSCC has been reported to be more sensitive to (chemo)radiotherapy-based treatment modalities. Objectives: This study aims to demonstrate how machine learning can aid in classifying OPSCC patients into risk groups (low-chance or high-chance) for overall survival. We examined the input variables using permutation feature importance. Furthermore, we provided explanations and interpretations using the Local Interpretable Model Agnostic Explanations (LIME) and SHapley Additive Explanation (SHAP) frameworks. Methods: The machine learning model for 3164 OPSCC patients was built using data obtained from the Surveillance, Epidemiology, and End Results (SEER) program database. A total of five variants of tree-based machine learning algorithms (voting ensemble, light GBM, XGBoost, Random Forest, and Extreme Random Trees) were used to divide the patients into risk groups. The developed model with the best predictive performance was temporally validated with a different cohort. Results: The voting ensemble machine learning algorithm showed an accuracy of 88.3%, Mathews’ correlation coefficient of 0.72, and weighted area under curve of 0.93, when temporally validated. Human papillomavirus (HPV) status, age of the patients, T stage, marital status, N stage, and the treatment modality (surgery with postoperative radiotherapy) were found to have the most significant effects on the ability of the machine learning model to predict overall survival. Similarly, for the individual patients with SHAP framework, HPV status, gender, and treatment modality (surgery with postoperative radiotherapy) were the input features that improved the model’s prediction. Conclusion: The proposed stratification of OPSCC patients into risk groups by machine learning techniques can provide accurate predictions and thus aid clinicians in administering early and personalized interventions. Clinicians could utilize the predicted risk with the explanations offered by the SHAP and LIME frameworks to understand previously undetected relationships between prognostic variables to make informed clinical decisions and effective interventions.-
dc.description.notification© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid17519
dc.identifier.oldhandle10024/14974
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2568
dc.identifier.urnURN:NBN:fi-fe202301041491-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijmedinf.2022.104896-
dc.relation.funderK. Albin Johassons Stiftelse-
dc.relation.funderThe Sigrid Juselius Foundation-
dc.relation.funderThe Helsinki University Hospital Research Fund-
dc.relation.funderTurku University Hospital Fund-
dc.relation.ispartofjournalInternational Journal of Medical Informatics-
dc.relation.issn1872-8243-
dc.relation.issn1386-5056-
dc.relation.urlhttps://doi.org/10.1016/j.ijmedinf.2022.104896-
dc.relation.volume168-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000880026400003-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14974
dc.subjectHuman Papillomavirus-
dc.subjectOropharyngeal Cancer-
dc.subjectPrecision Medicine-
dc.subjectprognostication-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysomachine learning-
dc.titleAn interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alabi_Almangush_Elmusrati_Leivo_Mäkitie_2022.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat