Lyme rashes disease classification using deep feature fusion technique

annif.suggestionsLyme disease|diagnostics|skin diseases|machine learning|deep learning|communicable diseases|classifications of diseases|small tortoiseshell|Lahore|infections|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p13975|http://www.yso.fi/onto/yso/p416|http://www.yso.fi/onto/yso/p8746|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p1804|http://www.yso.fi/onto/yso/p23539|http://www.yso.fi/onto/yso/p12548|http://www.yso.fi/onto/yso/p208737|http://www.yso.fi/onto/yso/p7316en
dc.contributor.authorAli, Ghulam
dc.contributor.authorAnwar, Muhammad
dc.contributor.authorNauman, Muhammad
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorRashid, Javed
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-03-05T06:36:09Z
dc.date.accessioned2025-06-25T13:11:09Z
dc.date.available2024-03-05T06:36:09Z
dc.date.issued2023-11-06
dc.description.abstractAutomatic classification of Lyme disease rashes on the skin helps clinicians and dermatologists’ probe and investigate Lyme skin rashes effectively. This paper proposes a new in-depth features fusion system to classify Lyme disease rashes. The proposed method consists of two main steps. First, three different deep learning models, Densenet201, InceptionV3, and Exception, were trained independently to extract the deep features from the erythema migrans (EM) images. Second, a deep feature fusion mechanism (meta classifier) is developed to integrate the deep features before the final classification output layer. The meta classifier is a basic deep convolutional neural network trained on original images and features extracted from base level three deep learning models. In the feature fusion mechanism, the last three layers of base models are dropped out and connected to the meta classifier. The proposed deep feature fusion method significantly improved the classification process, where the classification accuracy was 98.97%, which is particularly impressive than the other state-of-the-art models.-
dc.description.notification© 2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid20040
dc.identifier.oldhandle10024/16966
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1649
dc.identifier.urnURN:NBN:fi-fe202403059857-
dc.language.isoeng-
dc.publisherWiley-Blackwell-
dc.relation.doi10.1111/srt.13519-
dc.relation.ispartofjournalSkin Research and Technology-
dc.relation.issn1600-0846-
dc.relation.issn0909-752X-
dc.relation.issue11-
dc.relation.urlhttps://doi.org/10.1111/srt.13519-
dc.relation.volume29-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001095095800001-
dc.source.identifierScopus:85175944379-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16966
dc.subjectartificial intelligence-
dc.subjectconvolutional neural network classification-
dc.subjecterythema migrans-
dc.subjectfusion technique-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysoLyme disease-
dc.titleLyme rashes disease classification using deep feature fusion technique-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ali_Anwar_Nauman_Faheem_Rashid_2023.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat