Lyme rashes disease classification using deep feature fusion technique
| annif.suggestions | Lyme disease|diagnostics|skin diseases|machine learning|deep learning|communicable diseases|classifications of diseases|small tortoiseshell|Lahore|infections|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p13975|http://www.yso.fi/onto/yso/p416|http://www.yso.fi/onto/yso/p8746|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p1804|http://www.yso.fi/onto/yso/p23539|http://www.yso.fi/onto/yso/p12548|http://www.yso.fi/onto/yso/p208737|http://www.yso.fi/onto/yso/p7316 | en |
| dc.contributor.author | Ali, Ghulam | |
| dc.contributor.author | Anwar, Muhammad | |
| dc.contributor.author | Nauman, Muhammad | |
| dc.contributor.author | Faheem, Muhammad | |
| dc.contributor.author | Rashid, Javed | |
| dc.contributor.department | fi=Ei tutkimusalustaa|en=No platform| | - |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-4628-4486 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2024-03-05T06:36:09Z | |
| dc.date.accessioned | 2025-06-25T13:11:09Z | |
| dc.date.available | 2024-03-05T06:36:09Z | |
| dc.date.issued | 2023-11-06 | |
| dc.description.abstract | Automatic classification of Lyme disease rashes on the skin helps clinicians and dermatologists’ probe and investigate Lyme skin rashes effectively. This paper proposes a new in-depth features fusion system to classify Lyme disease rashes. The proposed method consists of two main steps. First, three different deep learning models, Densenet201, InceptionV3, and Exception, were trained independently to extract the deep features from the erythema migrans (EM) images. Second, a deep feature fusion mechanism (meta classifier) is developed to integrate the deep features before the final classification output layer. The meta classifier is a basic deep convolutional neural network trained on original images and features extracted from base level three deep learning models. In the feature fusion mechanism, the last three layers of base models are dropped out and connected to the meta classifier. The proposed deep feature fusion method significantly improved the classification process, where the classification accuracy was 98.97%, which is particularly impressive than the other state-of-the-art models. | - |
| dc.description.notification | © 2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 12 | - |
| dc.identifier.olddbid | 20040 | |
| dc.identifier.oldhandle | 10024/16966 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1649 | |
| dc.identifier.urn | URN:NBN:fi-fe202403059857 | - |
| dc.language.iso | eng | - |
| dc.publisher | Wiley-Blackwell | - |
| dc.relation.doi | 10.1111/srt.13519 | - |
| dc.relation.ispartofjournal | Skin Research and Technology | - |
| dc.relation.issn | 1600-0846 | - |
| dc.relation.issn | 0909-752X | - |
| dc.relation.issue | 11 | - |
| dc.relation.url | https://doi.org/10.1111/srt.13519 | - |
| dc.relation.volume | 29 | - |
| dc.rights | CC BY 4.0 | - |
| dc.source.identifier | WOS:001095095800001 | - |
| dc.source.identifier | Scopus:85175944379 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16966 | |
| dc.subject | artificial intelligence | - |
| dc.subject | convolutional neural network classification | - |
| dc.subject | erythema migrans | - |
| dc.subject | fusion technique | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.subject.yso | Lyme disease | - |
| dc.title | Lyme rashes disease classification using deep feature fusion technique | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Ali_Anwar_Nauman_Faheem_Rashid_2023.pdf
- Size:
- 1.18 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
