Artificial Intelligence-Based Condition Monitoring and Predictive Maintenance of Medium Voltage Cables : An Integrated System Development Approach

annif.suggestionsupkeep (servicing)|electrical power networks|cables|condition monitoring|distribution of electricity|maintenance|supervision|monitoring|technology|machine learning|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p9046|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p188|http://www.yso.fi/onto/yso/p15423|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p9047|http://www.yso.fi/onto/yso/p6118|http://www.yso.fi/onto/yso/p3628|http://www.yso.fi/onto/yso/p2339|http://www.yso.fi/onto/yso/p21846en
dc.contributor.authorKumar, Haresh
dc.contributor.authorShafiq, Muhammad
dc.contributor.authorKauhaniemi, Kimmo
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2556-1464-
dc.contributor.orcidhttps://orcid.org/0000-0002-7429-3171-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-01-08T08:12:55Z
dc.date.accessioned2025-06-25T13:56:00Z
dc.date.available2025-01-08T08:12:55Z
dc.date.issued2024-12-03
dc.description.abstractIn order to minimize power supply outages in electrical distribution systems, the reliable operation of medium-voltage (MV) cables is of paramount importance. These cables may experience unplanned downtime and failures, which can result in large financial losses and interruption of the processes. This study investigates the use of artificial intelligence (AI) in developing a system for condition monitoring and predictive maintenance of Medium Voltage (MV) cables. It uses historical data to train models for predicting potential cable failures, with the goal of increasing reliability and decreasing downtime. The study also investigates the effectiveness of machine learning (ML) algorithms in forecasting maintenance needs under various environmental conditions and factors. The findings suggest that ML can optimize MV cable maintenance strategies, resulting in increased efficiency and cost-effectiveness in electrical infrastructure management. Using cutting-edge technologies like sensors, data analytics, and ML, this paper proposes an integrated monitoring system development approach for MV cable predictive maintenance. The purpose of the proposed system is to improve the reliability of MV cable network by facilitating proactive maintenance strategies through timely insights into cable condition. This research provides useful insights for industry professionals, researchers, and policymakers who want to optimize maintenance strategies and ensure continuous power supply in modern electrical infrastructure.-
dc.description.notification©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.format.pagerange191-195-
dc.identifier.isbn978-8-9865-1022-5-
dc.identifier.olddbid22308
dc.identifier.oldhandle10024/18585
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3023
dc.identifier.urnURN:NBN:fi-fe202501081781-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Condition Monitoring and Diagnosis (CMD)-
dc.relation.doi10.23919/cmd62064.2024.10766104-
dc.relation.funderBusiness Finland-
dc.relation.funderFortum and Neste Foundation-
dc.relation.grantnumber1386/31/2022-
dc.relation.grantnumber20220101-
dc.relation.isbn979-8-3503-5387-7-
dc.relation.ispartof2024 10th International Conference on Condition Monitoring and Diagnosis (CMD)-
dc.relation.ispartofseriesIEEE International conference on condition monitoring and diagnosis-
dc.relation.issn2644-271X-
dc.relation.issn2374-0167-
dc.relation.urlhttps://doi.org/10.23919/CMD62064.2024.10766104-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18585
dc.subjectMV cable-
dc.subjectAI-
dc.subjectbig data platform-
dc.subjectmaintenance strategies-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysocondition monitoring-
dc.titleArtificial Intelligence-Based Condition Monitoring and Predictive Maintenance of Medium Voltage Cables : An Integrated System Development Approach-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kumar_Shafiq_Kauhaniemi_Elmusrati_2024.pdf
Size:
399.07 KB
Format:
Adobe Portable Document Format

Kokoelmat