An Optimization Clustering Algorithm Based on Texture Feature Fusion for Color Image Segmentation

annif.suggestionsalgorithms|image processing|pattern recognition|imaging|segmentation|texture|computer vision|cluster analysis|clusters|innovations|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p6449|http://www.yso.fi/onto/yso/p8266|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p18246|http://www.yso.fi/onto/yso/p24297|http://www.yso.fi/onto/yso/p2618|http://www.yso.fi/onto/yso/p27558|http://www.yso.fi/onto/yso/p18755|http://www.yso.fi/onto/yso/p7903en
dc.contributor.authorWang, Gaihua
dc.contributor.authorLiu, Yang
dc.contributor.authorXiong, Caiquan
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-8006-3236-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-04-30T07:43:13Z
dc.date.accessioned2025-06-25T12:56:38Z
dc.date.available2021-04-30T07:43:13Z
dc.date.issued2015
dc.description.abstractWe introduce a multi-feature optimization clustering algorithm for color image segmentation. The local binary pattern, the mean of the min-max difference, and the color components are combined as feature vectors to describe the magnitude change of grey value and the contrastive information of neighbor pixels. In clustering stage, it gets the initial clustering center and avoids getting into local optimization by adding mutation operator of genetic algorithm to particle swarm optimization. Compared with well-known methods, the proposed method has an overall better segmentation performance and can segment image more accurately by evaluating the ratio of misclassification.-
dc.description.notification© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.format.pagerange234-247-
dc.identifier.olddbid14266
dc.identifier.oldhandle10024/12459
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1199
dc.identifier.urnURN:NBN:fi-fe2021043028133-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.doi10.3390/a8020234-
dc.relation.ispartofjournalAlgorithms-
dc.relation.issn1999-4893-
dc.relation.issue2-
dc.relation.urlhttps://doi.org/10.3390/a8020234-
dc.relation.volume8-
dc.rightsCC BY 4.0-
dc.source.identifierScopus: 84940385537-
dc.source.identifierWOS: 000357933600011-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12459
dc.subjectclustering segmentation-
dc.subjectlocal binary pattern-
dc.subjectFuzzy c-means-
dc.subjectparticle swarm optimization-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.titleAn Optimization Clustering Algorithm Based on Texture Feature Fusion for Color Image Segmentation-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Wang_Liu_Xiong_2015.pdf
Size:
886.23 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat