Phonocardiogram-based diagnosis using machine learning : parametric estimation with multivariant classification

dc.contributor.authorAbdelmageed, Shaima
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-01-08T12:33:09Z
dc.date.accessioned2025-06-25T12:34:32Z
dc.date.available2020-01-08T12:33:09Z
dc.date.issued2018
dc.description.abstractThe heart sound signal, Phonocardiogram (PCG) is difficult to interpret even for experienced cardiologists. Interpretation are very subjective depending on the hearing ability of the physician. mHealth has been the adopted approach towards quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this paper is to diagnose the heart condition based on Phonocardiogram analysis using Machine Learning techniques assuming limited processing power to be encapsulated later in a mobile device. The cardiovascular system is modelled in a transfer function to provide PCG signal recording as it would be recorded at the wrist. The signal is, then, decomposed using filter bank and the analysed using discriminant function. The results showed that PCG with a 19 dB Signal-to-Noise-Ratio can lead to 97.33% successful diagnosis.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.format.pagerange1-6-
dc.identifier.olddbid11056
dc.identifier.oldhandle10024/10161
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/490
dc.identifier.urnURN:NBN:fi-fe202001081531-
dc.language.isoeng-
dc.publisherAIRCC Publishing Corporation-
dc.relation.doi10.5121/bioej.2018.5401-
dc.relation.ispartofjournalBioscience & engineering : an international journal-
dc.relation.issn2349-848X-
dc.relation.issue1/2/3/4-
dc.relation.urlhttp://doi.org/10.5121/bioej.2018.5401-
dc.relation.volume5-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/10161
dc.subjectanalysis-
dc.subjectclassification-
dc.subjectdata quality-
dc.subjectdiagnosis-
dc.subjectfilter banks-
dc.subjectmHealth-
dc.subjectPCG-
dc.subjectSNR-
dc.subjecttransfer function-
dc.subjectWavelet Transform-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.titlePhonocardiogram-based diagnosis using machine learning : parametric estimation with multivariant classification-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Abdelmageed_Elmusrati_2018.pdf
Size:
443.93 KB
Format:
Adobe Portable Document Format
Description:
artikkeli

Kokoelmat