No-MambAAD : Revitalizing Conv-Only Networks for Unsupervised Anomaly Detection

dc.contributor.authorFahim, Masud An-Nur Islam
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655
dc.date.accessioned2025-09-23T09:30:35Z
dc.date.issued2025-09-15
dc.description.abstractMost of the current state-of-the-art visual unsupervised anomaly detection (UAD) methods leverage complex neural architecture modules: Transformer-based methods provide high-quality anomaly detection performance due to their global feature extraction capability, similar to the recent Mamba based methods that combine the strengths of CNNs and Transformers. Some of the simpler reconstruction-based UAD methods are purely CNN-based, which offers linear complexity, but is performance-restricted by feature extraction locality. Hence, the architecture variants have inherent design trade-offs: CNNs lacks long-range feature interaction, Transformers struggle with quadratic complexity, and Mamba based solutions suffer in high parameter count and scalability. In this work we propose to revisit CNN-based approaches by introducing novel stripmodulation and gated-mixer mechanisms, and propose No-MambAAD, a novel visual UAD method absent of Mamba and Attention blocks. The proposed method offers similar or better anomaly detection performance than the current state-of-the-art approaches and outperforms the current state-of-the-art across multiple benchmarks with 38% smaller parameter count.
dc.description.notification©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent9
dc.format.pagerange3986-3994
dc.identifier.isbn979-8-3315-9994-2
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19018
dc.identifier.urnURN:NBN:fi-fe2025092397557
dc.language.isoeng
dc.publisherIEEE
dc.relation.conferenceIEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
dc.relation.doi10.1109/cvprw67362.2025.00383
dc.relation.funderERDF
dc.relation.grantnumber2021/403559/09 02 01 01/2023/EPL
dc.relation.isbn979-8-3315-9995-9
dc.relation.ispartof2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
dc.relation.issn2160-7516
dc.relation.issn2160-7508
dc.relation.urlhttps://doi.org/10.1109/CVPRW67362.2025.00383
dc.subjectVisualization
dc.subjectScalability
dc.subjectComputer architecture
dc.subjectTransformers
dc.subjectFeature extraction
dc.subjectDecoding
dc.subjectComplexity theory
dc.subjectPattern recognition
dc.subjectAnomaly detection
dc.subjectStandards
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|
dc.titleNo-MambAAD : Revitalizing Conv-Only Networks for Unsupervised Anomaly Detection
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|
dc.type.publicationarticle
dc.type.versionacceptedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fahim_Boutellier_2025.pdf
Size:
6.44 MB
Format:
Adobe Portable Document Format

Kokoelmat