How can algorithms help in segmenting users and customers? A systematic review and research agenda for algorithmic customer segmentation

annif.suggestionssegmentation|customer segmentation|customers|algorithms|machine learning|customer relationship management|customer information|marketing|marketing research|customisation|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p18246|http://www.yso.fi/onto/yso/p25658|http://www.yso.fi/onto/yso/p3294|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p8530|http://www.yso.fi/onto/yso/p20776|http://www.yso.fi/onto/yso/p5878|http://www.yso.fi/onto/yso/p13560|http://www.yso.fi/onto/yso/p16959en
dc.contributor.authorSalminen, Joni
dc.contributor.authorMustak, Mekhail
dc.contributor.authorSufyan, Muhammad
dc.contributor.authorJansen, Bernard J.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Markkinoinnin ja viestinnän yksikkö|en=School of Marketing and Communication|-
dc.contributor.orcidhttps://orcid.org/0000-0003-3230-0561-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-08-17T07:29:58Z
dc.date.accessioned2025-06-25T12:45:15Z
dc.date.available2023-08-17T07:29:58Z
dc.date.issued2023-07-06
dc.description.abstractWhat algorithm to choose for customer segmentation? Should you use one algorithm or many? How many customer segments should you create? How to evaluate the results? In this research, we carry out a systematic literature review to address such central questions in customer segmentation research and practice. The results from extracting information from 172 relevant articles show that algorithmic customer segmentation is the predominant approach for customer segmentation. We found researchers employing 46 different algorithms and 14 different evaluation metrics. For the algorithms, K-means clustering is the most employed. For the metrics, separation-focused metrics are slightly more prevalent than statistics-focused metrics. However, extant studies rarely use domain experts in evaluating the outcomes. Out of the 169 studies that provided details about hyperparameters, more than four out of five used segment size as their only hyperparameter. Typically, studies generate four segments, although the maximum number rarely exceeds twenty, and in most cases, is less than ten. Based on these findings, we propose seven key goals and three practical implications to enhance customer segmentation research and application.-
dc.description.notification© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent16-
dc.identifier.olddbid18938
dc.identifier.oldhandle10024/16128
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/847
dc.identifier.urnURN:NBN:fi-fe2023081797463-
dc.language.isoeng-
dc.publisherPalgrave Macmillan-
dc.relation.doi10.1057/s41270-023-00235-5-
dc.relation.funderUniversity of Vaasa-
dc.relation.funderLiikesivistysrahasto-
dc.relation.ispartofjournalJournal of Marketing Analytics-
dc.relation.issn2050-3326-
dc.relation.issn2050-3318-
dc.relation.urlhttps://doi.org/10.1057/s41270-023-00235-5-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001023363500001-
dc.source.identifierScopus:85164130803-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16128
dc.subjectAI-
dc.subject.disciplinefi=Markkinointi|en=Marketing|-
dc.subject.ysocustomer segmentation-
dc.subject.ysoalgorithms-
dc.subject.ysomachine learning-
dc.titleHow can algorithms help in segmenting users and customers? A systematic review and research agenda for algorithmic customer segmentation-
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|en=A2 Peer-reviewed review article|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Salminen_Mustak_Sufyan_Jansen_2023.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat