Intelligent Modeling and Optimization of Solar Plant Production Integration in the Smart Grid Using Machine Learning Models

annif.suggestionssolar energy|renewable energy sources|smart grids|machine learning|electrical power networks|energy production (process industry)|energy technology|deep learning|optimisation|sustainable energy|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p1214en
dc.contributor.authorAbubakar, Muhammad
dc.contributor.authorChe, Yanbo
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorBhutta, Muhammad Shoaib
dc.contributor.authorMudasar, Abdul Qadeer
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-09-06T12:08:39Z
dc.date.accessioned2025-06-25T13:49:02Z
dc.date.available2024-09-06T12:08:39Z
dc.date.issued2024-01-24
dc.description.abstractTo address the rising energy demands in industrial and public sectors, integrating zero-carbon emission energy sources into the power grid is crucial. Smart grids, equipped with advanced sensing, computing, and communication technologies, offer an efficient way to incorporate renewable energy resources and manage power systems effectively. However, improving solar energy efficiency, which currently contributes around 3.6% to global electricity, is a challenge in smart grid infrastructures. This research tackles this issue by deploying machine learning models, specifically recurrent neural network (RNN), long short-term memory (LSTM), and gate recurrent unit (GRU), to predict measurements that could enhance solar power generation in smart grids. The objective is to boost both performance and accuracy of solar power generation in the smart grid. The study conducts experimental analyses and performance evaluations of these models in smart grid environments, considering factors like power output, irradiance, and performance ratio. The results, presented through graphical visualizations, show notable improvements, particularly with the LSTM model, which achieves a 97% accuracy, outperforming the RNN and GRU models. This outcome highlights the LSTM model's effectiveness in accurately predicting measurements, thereby advancing solar power generation efficiency in the smart grid framework.-
dc.description.notification© 2024 The Authors. Advanced Energy and Sustainability Research published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent19-
dc.identifier.olddbid21455
dc.identifier.oldhandle10024/18054
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2801
dc.identifier.urnURN:NBN:fi-fe2024090669669-
dc.language.isoeng-
dc.publisherWiley-
dc.relation.doi10.1002/aesr.202300160-
dc.relation.ispartofjournalAdvanced Energy and Sustainability Research-
dc.relation.issn2699-9412-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1002/aesr.202300160-
dc.relation.volume5-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001147972800001-
dc.source.identifierScopus:85182808271-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18054
dc.subjectartificial intelligence-
dc.subjectrenewable energy resources-
dc.subjectsmartgrid-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysosolar energy-
dc.subject.ysomachine learning-
dc.titleIntelligent Modeling and Optimization of Solar Plant Production Integration in the Smart Grid Using Machine Learning Models-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Abubakar_Che_Faheem_Bhutta_Mudasar_2024.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat