Fault detection through discrete wavelet transform in overhead power transmission lines

annif.suggestionsdefects|transmission of electricity|power lines|electrical engineering|electrical power networks|reliability (general)|signal processing|power transmission networks|machine learning|Pakistan|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p543|http://www.yso.fi/onto/yso/p19716|http://www.yso.fi/onto/yso/p20336|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p1629|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p7752|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105965en
dc.contributor.authorAhmed, Nadeem
dc.contributor.authorHashmani, Ashfaq Ahmed
dc.contributor.authorKhokhar, Sohail
dc.contributor.authorTunio, Mohsin Ali
dc.contributor.authorFaheem, Muhammad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-10T06:20:39Z
dc.date.accessioned2025-06-25T12:58:26Z
dc.date.available2023-10-10T06:20:39Z
dc.date.issued2023-09-28
dc.description.abstractTransmission lines are a very important and vulnerable part of the power system. Power supply to the consumers depends on the fault-free status of transmission lines. If the normal working condition of the power system is disturbed due to faults, the persisting fault of long duration results in financial and economic losses. The fault analysis has an important association with the selection of protective devices and reliability assessment of high-voltage transmission lines. It is imperative to devise a suitable feature extraction tool for accurate fault detection and classification in transmission lines. Several feature extraction techniques have been used in the past but due to their limitations, that is, for use in stationary signals, limited space in localizing nonstationary signals, and less robustness in case of variations in normal operation conditions. Not suitable for real-time applications and large calculation time and memory requirements. This research presents a discrete wavelet transform (DWT)-based novel fault detection technique at different parameters, that is, fault inception and fault resistance with proper selection of mother wavelet. In this study, the feasibility of DWT using MATLAB software has been investigated. It has been concluded from the simulated data that wavelet transform together with an effective classification algorithm can be implemented as an effective tool for real-time monitoring and accurate fault detection and classification in the transmission lines.-
dc.description.notification© 2023 The Authors. Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent17-
dc.identifier.olddbid19139
dc.identifier.oldhandle10024/16339
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1254
dc.identifier.urnURN:NBN:fi-fe20231010139439-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1002/ese3.1573-
dc.relation.ispartofjournalEnergy Science & Engineering-
dc.relation.issn2050-0505-
dc.relation.urlhttps://doi.org/10.1002/ese3.1573-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16339
dc.subjectfault diagnosis-
dc.subjectfault location-
dc.subjectfault simulation-
dc.subjectpower system interconnection-
dc.subjecttransmission lines-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleFault detection through discrete wavelet transform in overhead power transmission lines-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ahmed_Hashmani_Khokhar_Tunio_Faheem_2023.pdf
Size:
5.94 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat